San Francisco Bay Area
This is the directed road network from the 9th DIMACS Implementation Challenge,
for the area "San Francisco Bay Area".
Metadata
Statistics
Size  n =  321,270

Volume  m =  794,830

Wedge count  s =  742,189

Claw count  z =  5,470,372

Cross count  x =  5,214,517

Triangle count  t =  5,505

Square count  q =  25,074

4Tour count  T_{4} =  3,964,178

Maximum degree  d_{max} =  14

Maximum outdegree  d^{+}_{max} =  7

Maximum indegree  d^{−}_{max} =  7

Average degree  d =  4.948 05

Fill  p =  7.700 79 × 10^{−6}

Size of LCC  N =  321,270

Size of LSCC  N_{s} =  321,270

Relative size of LSCC  N^{r}_{s} =  1.000 00

Diameter  δ =  837

50Percentile effective diameter  δ_{0.5} =  290.786

90Percentile effective diameter  δ_{0.9} =  474.340

Mean distance  δ_{m} =  294.709

Gini coefficient  G =  0.216 742

Relative edge distribution entropy  H_{er} =  0.993 148

Power law exponent  γ =  2.243 52

Tail power law exponent  γ_{t} =  6.411 00

Tail power law exponent with p  γ_{3} =  6.411 00

pvalue  p =  0.000 00

Outdegree tail power law exponent with p  γ_{3,o} =  6.411 00

Outdegree pvalue  p_{o} =  0.000 00

Indegree tail power law exponent with p  γ_{3,i} =  6.411 00

Indegree pvalue  p_{i} =  0.000 00

Degree assortativity  ρ =  +0.050 271 7

Degree assortativity pvalue  p_{ρ} =  0.000 00

In/outdegree correlation  ρ^{±} =  +1.000 00

Clustering coefficient  c =  0.022 251 7

Spectral norm  α =  8.306 40

Operator 2norm  ν =  4.153 20

Cyclic eigenvalue  π =  4.153 20

Algebraic connectivity  a =  2.830 79 × 10^{−6}

Reciprocity  y =  1.000 00

Nonbipartivity  b_{A} =  0.056 520 1

Normalized nonbipartivity  b_{N} =  0.000 214 122

Spectral bipartite frustration  b_{K} =  4.346 47 × 10^{−5}

Plots
Matrix decompositions plots
Downloads
References
[1]

Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
