New York City
This is the directed road network from the 9th DIMACS Implementation Challenge,
for the area "New York City".
Metadata
Statistics
Size  n =  264,346

Volume  m =  730,100

Wedge count  s =  769,738

Claw count  z =  6,016,896

Cross count  x =  6,221,822

Triangle count  t =  6,529

Square count  q =  44,950

4Tour count  T_{4} =  4,168,652

Maximum degree  d_{max} =  16

Maximum outdegree  d^{+}_{max} =  8

Maximum indegree  d^{−}_{max} =  8

Average degree  d =  5.523 82

Fill  p =  1.044 81 × 10^{−5}

Size of LCC  N =  264,346

Size of LSCC  N_{s} =  264,346

Relative size of LSCC  N^{r}_{s} =  1.000 00

Diameter  δ =  720

50Percentile effective diameter  δ_{0.5} =  257.770

90Percentile effective diameter  δ_{0.9} =  424.937

Mean distance  δ_{m} =  261.456

Gini coefficient  G =  0.189 062

Relative edge distribution entropy  H_{er} =  0.994 341

Power law exponent  γ =  2.074 97

Tail power law exponent  γ_{t} =  8.991 00

Tail power law exponent with p  γ_{3} =  8.991 00

pvalue  p =  0.000 00

Outdegree tail power law exponent with p  γ_{3,o} =  8.991 00

Outdegree pvalue  p_{o} =  0.000 00

Indegree tail power law exponent with p  γ_{3,i} =  8.991 00

Indegree pvalue  p_{i} =  0.000 00

Degree assortativity  ρ =  +0.178 503

Degree assortativity pvalue  p_{ρ} =  0.000 00

In/outdegree correlation  ρ^{±} =  +1.000 00

Clustering coefficient  c =  0.025 446 3

Spectral norm  α =  8.609 12

Operator 2norm  ν =  4.304 56

Cyclic eigenvalue  π =  4.304 56

Algebraic connectivity  a =  6.328 77 × 10^{−6}

Reciprocity  y =  1.000 00

Nonbipartivity  b_{A} =  0.086 135 1

Normalized nonbipartivity  b_{N} =  0.000 780 111

Spectral bipartite frustration  b_{K} =  0.000 141 331

Plots
Matrix decompositions plots
Downloads
References
[1]

Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
