Wikispeedia
These are paths from the Wikispeedia game, in which users are tasked to find a
article of the English Wikipedia, starting from a given article of the English
Wikipedia, being allowed to only click links. Nodes are articles of the
English Wikipedia, and edges represent clicks.
Metadata
Statistics
Size  n =  4,179

Volume  m =  343,950

Unique edge count  m̿ =  57,572

Wedge count  s =  5,350,052

Claw count  z =  1,231,596,321

Cross count  x =  314,843,715,024

Triangle count  t =  119,886

Square count  q =  4,843,415

4Tour count  T_{4} =  60,248,528

Maximum degree  d_{max} =  23,348

Maximum outdegree  d^{+}_{max} =  11,557

Maximum indegree  d^{−}_{max} =  11,791

Average degree  d =  164.609

Fill  p =  0.003 297 39

Average edge multiplicity  m̃ =  5.974 26

Size of LCC  N =  4,179

Size of LSCC  N_{s} =  3,766

Relative size of LSCC  N^{r}_{s} =  0.901 173

Diameter  δ =  5

50Percentile effective diameter  δ_{0.5} =  2.346 75

90Percentile effective diameter  δ_{0.9} =  2.927 82

Median distance  δ_{M} =  3

Mean distance  δ_{m} =  2.784 22

Gini coefficient  G =  0.747 283

Relative edge distribution entropy  H_{er} =  0.919 506

Power law exponent  γ =  1.382 01

Tail power law exponent  γ_{t} =  2.571 00

Tail power law exponent with p  γ_{3} =  2.571 00

pvalue  p =  0.011 000 0

Outdegree tail power law exponent with p  γ_{3,o} =  3.491 00

Outdegree pvalue  p_{o} =  0.064 000 0

Indegree tail power law exponent with p  γ_{3,i} =  2.641 00

Indegree pvalue  p_{i} =  0.745 000

Degree assortativity  ρ =  −0.115 584

Degree assortativity pvalue  p_{ρ} =  0.000 00

In/outdegree correlation  ρ^{±} =  +0.899 184

Clustering coefficient  c =  0.067 225 1

Spectral norm  α =  2,742.02

Operator 2norm  ν =  1,474.05

Cyclic eigenvalue  π =  1,275.36

Algebraic connectivity  a =  0.716 505

Reciprocity  y =  0.245 675

Nonbipartivity  b_{A} =  0.281 762

Normalized nonbipartivity  b_{N} =  0.382 642

Spectral bipartite frustration  b_{K} =  0.006 417 68

Plots
Matrix decompositions plots
Downloads
References
[1]

Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]

[2]

Jure Leskovec.
Stanford Network Analysis Project.
http://snap.stanford.edu/, September 2014.
