Wikipedia edits (ang)
This is the bipartite edit network of the Old English Wikipedia. It contains
users and pages from the Old English Wikipedia, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 16,202
|
Left size | n1 = | 2,207
|
Right size | n2 = | 13,995
|
Volume | m = | 168,436
|
Unique edge count | m̿ = | 75,013
|
Wedge count | s = | 56,387,716
|
Claw count | z = | 47,382,466,315
|
Cross count | x = | 35,434,055,394,561
|
Square count | q = | 135,379,384
|
4-Tour count | T4 = | 1,308,789,770
|
Maximum degree | dmax = | 11,785
|
Maximum left degree | d1max = | 11,785
|
Maximum right degree | d2max = | 729
|
Average degree | d = | 20.792 0
|
Average left degree | d1 = | 76.319 0
|
Average right degree | d2 = | 12.035 4
|
Fill | p = | 0.002 428 63
|
Average edge multiplicity | m̃ = | 2.245 42
|
Size of LCC | N = | 14,788
|
Diameter | δ = | 15
|
50-Percentile effective diameter | δ0.5 = | 3.271 57
|
90-Percentile effective diameter | δ0.9 = | 3.991 71
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.570 10
|
Gini coefficient | G = | 0.857 025
|
Balanced inequality ratio | P = | 0.148 626
|
Left balanced inequality ratio | P1 = | 0.052 251 3
|
Right balanced inequality ratio | P2 = | 0.183 714
|
Relative edge distribution entropy | Her = | 0.763 423
|
Power law exponent | γ = | 2.135 03
|
Tail power law exponent | γt = | 1.741 00
|
Tail power law exponent with p | γ3 = | 1.741 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.791 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 1.741 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.274 807
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 637.380
|
Algebraic connectivity | a = | 0.047 629 1
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.258 41
|
Controllability | C = | 12,163
|
Relative controllability | Cr = | 0.760 473
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|