Wiktionary edits (ang)
This is the bipartite edit network of the Old English Wiktionary. It contains
users and pages from the Old English Wiktionary, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 4,071
|
Left size | n1 = | 305
|
Right size | n2 = | 3,766
|
Volume | m = | 45,925
|
Unique edge count | m̿ = | 17,734
|
Wedge count | s = | 10,577,351
|
Claw count | z = | 6,367,682,526
|
Cross count | x = | 3,584,549,288,383
|
Square count | q = | 18,975,292
|
4-Tour count | T4 = | 194,166,160
|
Maximum degree | dmax = | 8,758
|
Maximum left degree | d1max = | 8,758
|
Maximum right degree | d2max = | 106
|
Average degree | d = | 22.562 0
|
Average left degree | d1 = | 150.574
|
Average right degree | d2 = | 12.194 6
|
Fill | p = | 0.015 439 3
|
Average edge multiplicity | m̃ = | 2.589 66
|
Size of LCC | N = | 3,750
|
Diameter | δ = | 14
|
50-Percentile effective diameter | δ0.5 = | 1.809 92
|
90-Percentile effective diameter | δ0.9 = | 5.263 09
|
Median distance | δM = | 2
|
Mean distance | δm = | 3.064 22
|
Gini coefficient | G = | 0.797 003
|
Balanced inequality ratio | P = | 0.190 822
|
Left balanced inequality ratio | P1 = | 0.058 116 5
|
Right balanced inequality ratio | P2 = | 0.247 447
|
Relative edge distribution entropy | Her = | 0.746 425
|
Power law exponent | γ = | 1.902 75
|
Tail power law exponent | γt = | 1.891 00
|
Tail power law exponent with p | γ3 = | 1.891 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.631 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 8.991 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.280 678
|
Degree assortativity p-value | pρ = | 2.365 54 × 10−318
|
Spectral norm | α = | 451.373
|
Algebraic connectivity | a = | 0.028 545 9
|
Spectral separation | |λ1[A] / λ2[A]| = | 3.081 40
|
Controllability | C = | 3,466
|
Relative controllability | Cr = | 0.855 802
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|