Wikiversity edits (ar)
This is the bipartite edit network of the Arabic Wikiversity. It contains users
and pages from the Arabic Wikiversity, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 18,752
|
Left size | n1 = | 1,091
|
Right size | n2 = | 17,661
|
Volume | m = | 50,405
|
Unique edge count | m̿ = | 41,056
|
Wedge count | s = | 94,917,609
|
Claw count | z = | 257,632,056,822
|
Cross count | x = | 620,791,938,807,027
|
Square count | q = | 28,737,746
|
4-Tour count | T4 = | 609,665,076
|
Maximum degree | dmax = | 11,368
|
Maximum left degree | d1max = | 11,368
|
Maximum right degree | d2max = | 240
|
Average degree | d = | 5.375 96
|
Average left degree | d1 = | 46.200 7
|
Average right degree | d2 = | 2.854 03
|
Fill | p = | 0.002 130 77
|
Average edge multiplicity | m̃ = | 1.227 71
|
Size of LCC | N = | 18,038
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.006 73
|
90-Percentile effective diameter | δ0.9 = | 3.872 01
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.106 61
|
Gini coefficient | G = | 0.713 205
|
Balanced inequality ratio | P = | 0.232 378
|
Left balanced inequality ratio | P1 = | 0.079 496 1
|
Right balanced inequality ratio | P2 = | 0.336 117
|
Relative edge distribution entropy | Her = | 0.715 889
|
Power law exponent | γ = | 2.544 04
|
Tail power law exponent | γt = | 2.201 00
|
Tail power law exponent with p | γ3 = | 2.201 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.671 00
|
Left p-value | p1 = | 0.760 000
|
Right tail power law exponent with p | γ3,2 = | 4.481 00
|
Right p-value | p2 = | 0.474 000
|
Degree assortativity | ρ = | −0.230 572
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 152.423
|
Algebraic connectivity | a = | 0.010 243 0
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.285 96
|
Controllability | C = | 16,707
|
Relative controllability | Cr = | 0.900 501
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|