Wikibooks edits (az)
This is the bipartite edit network of the Azerbaijani Wikibooks. It contains
users and pages from the Azerbaijani Wikibooks, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 6,596
|
Left size | n1 = | 401
|
Right size | n2 = | 6,195
|
Volume | m = | 15,901
|
Unique edge count | m̿ = | 8,783
|
Wedge count | s = | 9,758,668
|
Claw count | z = | 11,650,031,324
|
Cross count | x = | 11,369,284,088,807
|
Square count | q = | 328,803
|
4-Tour count | T4 = | 41,698,982
|
Maximum degree | dmax = | 7,291
|
Maximum left degree | d1max = | 7,291
|
Maximum right degree | d2max = | 119
|
Average degree | d = | 4.821 41
|
Average left degree | d1 = | 39.653 4
|
Average right degree | d2 = | 2.566 75
|
Fill | p = | 0.003 535 55
|
Average edge multiplicity | m̃ = | 1.810 43
|
Size of LCC | N = | 6,279
|
Diameter | δ = | 15
|
50-Percentile effective diameter | δ0.5 = | 2.344 81
|
90-Percentile effective diameter | δ0.9 = | 3.890 11
|
Median distance | δM = | 3
|
Mean distance | δm = | 3.095 58
|
Gini coefficient | G = | 0.715 368
|
Balanced inequality ratio | P = | 0.222 502
|
Left balanced inequality ratio | P1 = | 0.082 636 3
|
Right balanced inequality ratio | P2 = | 0.324 005
|
Relative edge distribution entropy | Her = | 0.704 301
|
Power law exponent | γ = | 4.662 33
|
Tail power law exponent | γt = | 3.201 00
|
Tail power law exponent with p | γ3 = | 3.201 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.841 00
|
Left p-value | p1 = | 0.435 000
|
Right tail power law exponent with p | γ3,2 = | 4.881 00
|
Right p-value | p2 = | 0.039 000 0
|
Degree assortativity | ρ = | −0.320 065
|
Degree assortativity p-value | pρ = | 2.216 76 × 10−208
|
Spectral norm | α = | 161.223
|
Algebraic connectivity | a = | 0.009 720 26
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.236 98
|
Controllability | C = | 5,816
|
Relative controllability | Cr = | 0.883 085
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|