Wikipedia edits (be-x-old)
This is the bipartite edit network of the беларуская
(тарашкевіца) Wikipedia. It contains users and pages from the
беларуская (тарашкевіца) Wikipedia, connected by edit
events. Each edge represents an edit. The dataset includes the timestamp of
each edit.
Metadata
Statistics
Size | n = | 164,905
|
Left size | n1 = | 5,620
|
Right size | n2 = | 159,285
|
Volume | m = | 1,770,298
|
Unique edge count | m̿ = | 922,783
|
Wedge count | s = | 8,704,095,362
|
Cross count | x = | 911,863,198,250,595,200
|
Square count | q = | 13,306,911,078
|
4-Tour count | T4 = | 141,274,625,038
|
Maximum degree | dmax = | 113,019
|
Maximum left degree | d1max = | 113,019
|
Maximum right degree | d2max = | 2,094
|
Average degree | d = | 21.470 5
|
Average left degree | d1 = | 315.000
|
Average right degree | d2 = | 11.114 0
|
Fill | p = | 0.001 030 83
|
Average edge multiplicity | m̃ = | 1.918 43
|
Size of LCC | N = | 163,593
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 3.150 30
|
90-Percentile effective diameter | δ0.9 = | 3.855 75
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.252 18
|
Gini coefficient | G = | 0.833 185
|
Balanced inequality ratio | P = | 0.167 121
|
Left balanced inequality ratio | P1 = | 0.033 312 5
|
Right balanced inequality ratio | P2 = | 0.235 810
|
Relative edge distribution entropy | Her = | 0.722 976
|
Power law exponent | γ = | 1.884 56
|
Tail power law exponent | γt = | 3.201 00
|
Tail power law exponent with p | γ3 = | 3.201 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.681 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 3.491 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.245 909
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 3,250.99
|
Algebraic connectivity | a = | 0.075 532 6
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.805 77
|
Controllability | C = | 153,816
|
Relative controllability | Cr = | 0.935 643
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|