Wikiquote edits (bs)
This is the bipartite edit network of the Bosnian Wikiquote. It contains users
and pages from the Bosnian Wikiquote, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 8,557
|
Left size | n1 = | 505
|
Right size | n2 = | 8,052
|
Volume | m = | 48,896
|
Unique edge count | m̿ = | 23,685
|
Wedge count | s = | 24,076,984
|
Claw count | z = | 26,689,489,091
|
Cross count | x = | 24,554,241,065,673
|
Square count | q = | 14,815,727
|
4-Tour count | T4 = | 214,900,154
|
Maximum degree | dmax = | 13,877
|
Maximum left degree | d1max = | 13,877
|
Maximum right degree | d2max = | 354
|
Average degree | d = | 11.428 3
|
Average left degree | d1 = | 96.823 8
|
Average right degree | d2 = | 6.072 53
|
Fill | p = | 0.005 824 76
|
Average edge multiplicity | m̃ = | 2.064 43
|
Size of LCC | N = | 8,024
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 2.840 93
|
90-Percentile effective diameter | δ0.9 = | 3.933 00
|
Median distance | δM = | 3
|
Mean distance | δm = | 3.165 65
|
Gini coefficient | G = | 0.797 294
|
Balanced inequality ratio | P = | 0.185 649
|
Left balanced inequality ratio | P1 = | 0.054 298 9
|
Right balanced inequality ratio | P2 = | 0.263 232
|
Relative edge distribution entropy | Her = | 0.732 888
|
Power law exponent | γ = | 2.277 80
|
Tail power law exponent | γt = | 2.091 00
|
Tail power law exponent with p | γ3 = | 2.091 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.671 00
|
Left p-value | p1 = | 0.020 000 0
|
Right tail power law exponent with p | γ3,2 = | 7.421 00
|
Right p-value | p2 = | 0.150 000
|
Degree assortativity | ρ = | −0.325 369
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 680.137
|
Algebraic connectivity | a = | 0.019 257 1
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.488 20
|
Controllability | C = | 7,329
|
Relative controllability | Cr = | 0.884 184
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|