Wiktionary edits (bs)
This is the bipartite edit network of the Bosnian Wiktionary. It contains users
and pages from the Bosnian Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 10,882
|
Left size | n1 = | 299
|
Right size | n2 = | 10,583
|
Volume | m = | 60,663
|
Unique edge count | m̿ = | 33,509
|
Wedge count | s = | 59,244,315
|
Claw count | z = | 111,058,838,286
|
Cross count | x = | 179,295,435,306,116
|
Square count | q = | 35,420,914
|
4-Tour count | T4 = | 520,413,426
|
Maximum degree | dmax = | 14,852
|
Maximum left degree | d1max = | 14,852
|
Maximum right degree | d2max = | 110
|
Average degree | d = | 11.149 2
|
Average left degree | d1 = | 202.886
|
Average right degree | d2 = | 5.732 12
|
Fill | p = | 0.010 589 6
|
Average edge multiplicity | m̃ = | 1.810 35
|
Size of LCC | N = | 10,616
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 1.845 45
|
90-Percentile effective diameter | δ0.9 = | 4.451 94
|
Median distance | δM = | 2
|
Mean distance | δm = | 3.014 87
|
Gini coefficient | G = | 0.725 152
|
Balanced inequality ratio | P = | 0.227 404
|
Left balanced inequality ratio | P1 = | 0.051 052 5
|
Right balanced inequality ratio | P2 = | 0.334 520
|
Relative edge distribution entropy | Her = | 0.715 112
|
Power law exponent | γ = | 2.041 47
|
Tail power law exponent | γt = | 3.561 00
|
Tail power law exponent with p | γ3 = | 3.561 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.581 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 5.201 00
|
Right p-value | p2 = | 0.040 000 0
|
Degree assortativity | ρ = | −0.296 217
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 279.799
|
Algebraic connectivity | a = | 0.025 882 9
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.197 67
|
Controllability | C = | 10,280
|
Relative controllability | Cr = | 0.946 244
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|