Wikipedia edits (cdo)
This is the bipartite edit network of the Min Dong Chinese Wikipedia. It
contains users and pages from the Min Dong Chinese Wikipedia, connected by edit
events. Each edge represents an edit. The dataset includes the timestamp of
each edit.
Metadata
Statistics
Size | n = | 26,047
|
Left size | n1 = | 788
|
Right size | n2 = | 25,259
|
Volume | m = | 54,524
|
Unique edge count | m̿ = | 31,229
|
Wedge count | s = | 124,236,907
|
Claw count | z = | 621,463,847,683
|
Cross count | x = | 2,400,436,365,520,781
|
Square count | q = | 4,384,478
|
4-Tour count | T4 = | 532,095,490
|
Maximum degree | dmax = | 15,952
|
Maximum left degree | d1max = | 15,952
|
Maximum right degree | d2max = | 316
|
Average degree | d = | 4.186 59
|
Average left degree | d1 = | 69.192 9
|
Average right degree | d2 = | 2.158 60
|
Fill | p = | 0.001 568 97
|
Average edge multiplicity | m̃ = | 1.745 94
|
Size of LCC | N = | 21,145
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 1.970 42
|
90-Percentile effective diameter | δ0.9 = | 5.141 31
|
Median distance | δM = | 2
|
Mean distance | δm = | 3.234 33
|
Gini coefficient | G = | 0.794 087
|
Balanced inequality ratio | P = | 0.160 672
|
Left balanced inequality ratio | P1 = | 0.074 370 9
|
Right balanced inequality ratio | P2 = | 0.277 071
|
Relative edge distribution entropy | Her = | 0.683 497
|
Power law exponent | γ = | 8.552 53
|
Tail power law exponent | γt = | 2.351 00
|
Tail power law exponent with p | γ3 = | 2.351 00
|
p-value | p = | 0.033 000 0
|
Left tail power law exponent with p | γ3,1 = | 2.071 00
|
Left p-value | p1 = | 0.607 000
|
Right tail power law exponent with p | γ3,2 = | 3.501 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.592 093
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 358.230
|
Algebraic connectivity | a = | 0.000 594 468
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.429 08
|
Controllability | C = | 20,332
|
Relative controllability | Cr = | 0.933 946
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|