Wiktionary edits (co)
This is the bipartite edit network of the Corsican Wiktionary. It contains
users and pages from the Corsican Wiktionary, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 11,470
|
Left size | n1 = | 261
|
Right size | n2 = | 11,209
|
Volume | m = | 64,859
|
Unique edge count | m̿ = | 39,837
|
Wedge count | s = | 97,520,054
|
Claw count | z = | 234,689,957,831
|
Cross count | x = | 475,378,151,891,291
|
Square count | q = | 74,093,915
|
4-Tour count | T4 = | 982,911,518
|
Maximum degree | dmax = | 13,692
|
Maximum left degree | d1max = | 13,692
|
Maximum right degree | d2max = | 143
|
Average degree | d = | 11.309 3
|
Average left degree | d1 = | 248.502
|
Average right degree | d2 = | 5.786 33
|
Fill | p = | 0.013 616 9
|
Average edge multiplicity | m̃ = | 1.628 11
|
Size of LCC | N = | 11,137
|
Diameter | δ = | 15
|
50-Percentile effective diameter | δ0.5 = | 1.675 33
|
90-Percentile effective diameter | δ0.9 = | 3.675 56
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.570 29
|
Gini coefficient | G = | 0.728 751
|
Balanced inequality ratio | P = | 0.215 429
|
Left balanced inequality ratio | P1 = | 0.051 157 1
|
Right balanced inequality ratio | P2 = | 0.329 900
|
Relative edge distribution entropy | Her = | 0.700 644
|
Power law exponent | γ = | 1.937 54
|
Tail power law exponent | γt = | 3.171 00
|
Tail power law exponent with p | γ3 = | 3.171 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.391 00
|
Left p-value | p1 = | 0.102 000
|
Right tail power law exponent with p | γ3,2 = | 3.281 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.419 088
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 329.765
|
Algebraic connectivity | a = | 0.011 575 5
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.659 84
|
Controllability | C = | 10,953
|
Relative controllability | Cr = | 0.955 676
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|