Wikibooks edits (de)
This is the bipartite edit network of the German Wikibooks. It contains users
and pages from the German Wikibooks, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 77,233
|
Left size | n1 = | 11,476
|
Right size | n2 = | 65,757
|
Volume | m = | 528,120
|
Unique edge count | m̿ = | 167,880
|
Wedge count | s = | 202,581,757
|
Claw count | z = | 440,266,762,958
|
Cross count | x = | 865,810,231,318,856
|
Square count | q = | 42,231,472
|
4-Tour count | T4 = | 1,148,607,172
|
Maximum degree | dmax = | 27,091
|
Maximum left degree | d1max = | 27,091
|
Maximum right degree | d2max = | 3,765
|
Average degree | d = | 13.676 0
|
Average left degree | d1 = | 46.019 5
|
Average right degree | d2 = | 8.031 39
|
Fill | p = | 0.000 222 467
|
Average edge multiplicity | m̃ = | 3.145 82
|
Size of LCC | N = | 74,043
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.665 45
|
90-Percentile effective diameter | δ0.9 = | 5.356 62
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.298 88
|
Gini coefficient | G = | 0.810 388
|
Balanced inequality ratio | P = | 0.173 435
|
Left balanced inequality ratio | P1 = | 0.096 334 2
|
Right balanced inequality ratio | P2 = | 0.233 027
|
Relative edge distribution entropy | Her = | 0.806 980
|
Power law exponent | γ = | 2.517 55
|
Tail power law exponent | γt = | 2.421 00
|
Tail power law exponent with p | γ3 = | 2.421 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.801 00
|
Left p-value | p1 = | 0.013 000 0
|
Right tail power law exponent with p | γ3,2 = | 3.071 00
|
Right p-value | p2 = | 0.056 000 0
|
Degree assortativity | ρ = | −0.137 649
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,506.81
|
Algebraic connectivity | a = | 0.044 917 2
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.136 49
|
Controllability | C = | 57,913
|
Relative controllability | Cr = | 0.766 988
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|