Wikiquote edits (de)
This is the bipartite edit network of the German Wikiquote. It contains users
and pages from the German Wikiquote, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 24,753
|
Left size | n1 = | 5,005
|
Right size | n2 = | 19,748
|
Volume | m = | 323,207
|
Unique edge count | m̿ = | 113,039
|
Wedge count | s = | 136,307,956
|
Claw count | z = | 184,998,861,619
|
Cross count | x = | 223,401,316,543,986
|
Square count | q = | 241,569,649
|
4-Tour count | T4 = | 2,478,175,386
|
Maximum degree | dmax = | 45,765
|
Maximum left degree | d1max = | 45,765
|
Maximum right degree | d2max = | 2,335
|
Average degree | d = | 26.114 6
|
Average left degree | d1 = | 64.576 8
|
Average right degree | d2 = | 16.366 6
|
Fill | p = | 0.001 143 67
|
Average edge multiplicity | m̃ = | 2.859 25
|
Size of LCC | N = | 23,339
|
Diameter | δ = | 15
|
50-Percentile effective diameter | δ0.5 = | 3.121 56
|
90-Percentile effective diameter | δ0.9 = | 4.414 47
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.494 03
|
Gini coefficient | G = | 0.847 584
|
Balanced inequality ratio | P = | 0.159 769
|
Left balanced inequality ratio | P1 = | 0.056 329 2
|
Right balanced inequality ratio | P2 = | 0.209 717
|
Relative edge distribution entropy | Her = | 0.769 937
|
Power law exponent | γ = | 1.924 37
|
Tail power law exponent | γt = | 2.591 00
|
Tail power law exponent with p | γ3 = | 2.591 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.841 00
|
Left p-value | p1 = | 0.009 000 00
|
Right tail power law exponent with p | γ3,2 = | 4.421 00
|
Right p-value | p2 = | 0.129 000
|
Degree assortativity | ρ = | −0.217 737
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 2,002.86
|
Algebraic connectivity | a = | 0.038 372 9
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.860 07
|
Controllability | C = | 16,411
|
Relative controllability | Cr = | 0.676 770
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|