Wikivoyage edits (de)
This is the bipartite edit network of the German Wikivoyage. It contains users
and pages from the German Wikivoyage, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 77,084
|
Left size | n1 = | 10,265
|
Right size | n2 = | 66,819
|
Volume | m = | 874,884
|
Unique edge count | m̿ = | 261,815
|
Wedge count | s = | 1,460,803,232
|
Claw count | z = | 11,132,763,882,507
|
Cross count | x = | 74,735,372,665,187,264
|
Square count | q = | 1,216,252,624
|
4-Tour count | T4 = | 15,573,981,914
|
Maximum degree | dmax = | 104,347
|
Maximum left degree | d1max = | 104,347
|
Maximum right degree | d2max = | 14,909
|
Average degree | d = | 22.699 5
|
Average left degree | d1 = | 85.229 8
|
Average right degree | d2 = | 13.093 3
|
Average edge multiplicity | m̃ = | 3.341 61
|
Size of LCC | N = | 76,632
|
Diameter | δ = | 9
|
50-Percentile effective diameter | δ0.5 = | 3.032 70
|
90-Percentile effective diameter | δ0.9 = | 3.985 70
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.294 19
|
Gini coefficient | G = | 0.874 517
|
Balanced inequality ratio | P = | 0.137 728
|
Left balanced inequality ratio | P1 = | 0.057 255 6
|
Right balanced inequality ratio | P2 = | 0.183 132
|
Relative edge distribution entropy | Her = | 0.729 813
|
Power law exponent | γ = | 2.338 27
|
Tail power law exponent | γt = | 2.881 00
|
Tail power law exponent with p | γ3 = | 2.881 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.891 00
|
Left p-value | p1 = | 0.456 000
|
Right tail power law exponent with p | γ3,2 = | 3.541 00
|
Right p-value | p2 = | 0.130 000
|
Degree assortativity | ρ = | −0.280 230
|
Degree assortativity p-value | pρ = | 0.000 00
|
Algebraic connectivity | a = | 0.060 213 7
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.495 32
|
Controllability | C = | 66,388
|
Relative controllability | Cr = | 0.862 406
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|