Wikipedia edits (ee)
This is the bipartite edit network of the Ewe Wikipedia. It contains users and
pages from the Ewe Wikipedia, connected by edit events. Each edge represents an
edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 3,343
|
Left size | n1 = | 748
|
Right size | n2 = | 2,595
|
Volume | m = | 33,264
|
Unique edge count | m̿ = | 13,606
|
Wedge count | s = | 1,545,170
|
Claw count | z = | 160,156,502
|
Cross count | x = | 17,000,648,420
|
Square count | q = | 6,404,384
|
4-Tour count | T4 = | 57,446,828
|
Maximum degree | dmax = | 3,295
|
Maximum left degree | d1max = | 3,295
|
Maximum right degree | d2max = | 216
|
Average degree | d = | 19.900 7
|
Average left degree | d1 = | 44.470 6
|
Average right degree | d2 = | 12.818 5
|
Fill | p = | 0.007 009 57
|
Average edge multiplicity | m̃ = | 2.444 80
|
Size of LCC | N = | 2,736
|
Diameter | δ = | 14
|
50-Percentile effective diameter | δ0.5 = | 3.694 46
|
90-Percentile effective diameter | δ0.9 = | 5.801 62
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.368 93
|
Gini coefficient | G = | 0.848 828
|
Balanced inequality ratio | P = | 0.140 888
|
Left balanced inequality ratio | P1 = | 0.095 689 0
|
Right balanced inequality ratio | P2 = | 0.151 696
|
Relative edge distribution entropy | Her = | 0.803 485
|
Power law exponent | γ = | 2.245 30
|
Tail power law exponent | γt = | 1.791 00
|
Tail power law exponent with p | γ3 = | 1.791 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.661 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 1.841 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.149 212
|
Degree assortativity p-value | pρ = | 1.401 81 × 10−68
|
Spectral norm | α = | 345.076
|
Algebraic connectivity | a = | 0.007 641 57
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.483 22
|
Controllability | C = | 1,944
|
Relative controllability | Cr = | 0.589 091
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|