Wikiversity edits (el)
This is the bipartite edit network of the Greek Wikiversity. It contains users
and pages from the Greek Wikiversity, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 4,714
|
Left size | n1 = | 632
|
Right size | n2 = | 4,082
|
Volume | m = | 23,644
|
Unique edge count | m̿ = | 8,471
|
Wedge count | s = | 2,104,913
|
Claw count | z = | 626,385,721
|
Cross count | x = | 158,473,773,305
|
Square count | q = | 316,038
|
4-Tour count | T4 = | 10,976,674
|
Maximum degree | dmax = | 3,766
|
Maximum left degree | d1max = | 3,766
|
Maximum right degree | d2max = | 509
|
Average degree | d = | 10.031 4
|
Average left degree | d1 = | 37.411 4
|
Average right degree | d2 = | 5.792 26
|
Fill | p = | 0.003 283 56
|
Average edge multiplicity | m̃ = | 2.791 17
|
Size of LCC | N = | 4,358
|
Diameter | δ = | 10
|
50-Percentile effective diameter | δ0.5 = | 3.449 38
|
90-Percentile effective diameter | δ0.9 = | 4.839 98
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.870 22
|
Gini coefficient | G = | 0.797 506
|
Balanced inequality ratio | P = | 0.182 076
|
Left balanced inequality ratio | P1 = | 0.096 472 7
|
Right balanced inequality ratio | P2 = | 0.250 761
|
Relative edge distribution entropy | Her = | 0.786 573
|
Power law exponent | γ = | 2.880 76
|
Tail power law exponent | γt = | 2.501 00
|
Tail power law exponent with p | γ3 = | 2.501 00
|
p-value | p = | 0.031 000 0
|
Left tail power law exponent with p | γ3,1 = | 1.821 00
|
Left p-value | p1 = | 0.187 000
|
Right tail power law exponent with p | γ3,2 = | 3.221 00
|
Right p-value | p2 = | 0.057 000 0
|
Degree assortativity | ρ = | −0.241 250
|
Degree assortativity p-value | pρ = | 1.904 45 × 10−112
|
Spectral norm | α = | 353.854
|
Algebraic connectivity | a = | 0.069 372 4
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.115 87
|
Controllability | C = | 3,647
|
Relative controllability | Cr = | 0.779 607
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|