Wikipedia edits (eml)
This is the bipartite edit network of the EmilianoRomagnolo Wikipedia. It
contains users and pages from the EmilianoRomagnolo Wikipedia, connected by
edit events. Each edge represents an edit. The dataset includes the timestamp
of each edit.
Metadata
Statistics
Size  n =  28,563

Left size  n_{1} =  1,217

Right size  n_{2} =  27,346

Volume  m =  97,631

Unique edge count  m̿ =  48,812

Wedge count  s =  94,610,321

Claw count  z =  280,497,860,895

Cross count  x =  732,785,460,641,912

Square count  q =  16,238,915

4Tour count  T_{4} =  508,478,296

Maximum degree  d_{max} =  14,181

Maximum left degree  d_{1max} =  14,181

Maximum right degree  d_{2max} =  1,263

Average degree  d =  6.836 19

Average left degree  d_{1} =  80.222 7

Average right degree  d_{2} =  3.570 21

Fill  p =  0.001 466 70

Average edge multiplicity  m̃ =  2.000 14

Size of LCC  N =  25,485

Diameter  δ =  11

50Percentile effective diameter  δ_{0.5} =  3.324 99

90Percentile effective diameter  δ_{0.9} =  3.933 70

Median distance  δ_{M} =  4

Mean distance  δ_{m} =  3.541 66

Gini coefficient  G =  0.829 162

Balanced inequality ratio  P =  0.147 433

Left balanced inequality ratio  P_{1} =  0.061 845 1

Right balanced inequality ratio  P_{2} =  0.221 641

Relative edge distribution entropy  H_{er} =  0.717 675

Power law exponent  γ =  4.524 92

Tail power law exponent  γ_{t} =  2.511 00

Tail power law exponent with p  γ_{3} =  2.511 00

pvalue  p =  0.000 00

Left tail power law exponent with p  γ_{3,1} =  1.571 00

Left pvalue  p_{1} =  0.020 000 0

Right tail power law exponent with p  γ_{3,2} =  3.951 00

Right pvalue  p_{2} =  0.000 00

Degree assortativity  ρ =  −0.521 811

Degree assortativity pvalue  p_{ρ} =  0.000 00

Spectral norm  α =  480.199

Algebraic connectivity  a =  0.014 619 1

Spectral separation  λ_{1}[A] / λ_{2}[A] =  1.229 67

Controllability  C =  23,732

Relative controllability  C_{r} =  0.912 769

Plots
Matrix decompositions plots
Downloads
References
[1]

Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]

[2]

Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
