Wikibooks edits (en)
This is the bipartite edit network of the English Wikibooks. It contains users
and pages from the English Wikibooks, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 328,993
|
Left size | n1 = | 79,268
|
Right size | n2 = | 249,725
|
Volume | m = | 2,233,443
|
Unique edge count | m̿ = | 766,272
|
Wedge count | s = | 5,255,623,618
|
Claw count | z = | 83,438,718,750,347
|
Cross count | x = | 1,105,380,470,247,386,240
|
Square count | q = | 1,523,983,107
|
4-Tour count | T4 = | 33,216,173,564
|
Maximum degree | dmax = | 106,575
|
Maximum left degree | d1max = | 106,575
|
Maximum right degree | d2max = | 12,113
|
Average degree | d = | 13.577 4
|
Average left degree | d1 = | 28.175 8
|
Average right degree | d2 = | 8.943 61
|
Average edge multiplicity | m̃ = | 2.914 69
|
Size of LCC | N = | 313,096
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.658 08
|
90-Percentile effective diameter | δ0.9 = | 4.949 17
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.177 34
|
Gini coefficient | G = | 0.815 331
|
Balanced inequality ratio | P = | 0.164 954
|
Left balanced inequality ratio | P1 = | 0.116 142
|
Right balanced inequality ratio | P2 = | 0.208 526
|
Relative edge distribution entropy | Her = | 0.800 517
|
Power law exponent | γ = | 2.491 28
|
Tail power law exponent | γt = | 2.251 00
|
Tail power law exponent with p | γ3 = | 2.251 00
|
p-value | p = | 0.835 000
|
Left tail power law exponent with p | γ3,1 = | 2.011 00
|
Left p-value | p1 = | 0.911 000
|
Right tail power law exponent with p | γ3,2 = | 2.511 00
|
Right p-value | p2 = | 0.839 000
|
Degree assortativity | ρ = | −0.209 422
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 5,192.56
|
Algebraic connectivity | a = | 0.009 251 46
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.413 58
|
Controllability | C = | 243,214
|
Relative controllability | Cr = | 0.746 204
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|