Wikiquote edits (en)
This is the bipartite edit network of the English Wikiquote. It contains users
and pages from the English Wikiquote, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size  n =  186,686

Left size  n_{1} =  35,962

Right size  n_{2} =  150,724

Volume  m =  1,271,653

Unique edge count  m̿ =  482,024

Wedge count  s =  2,171,858,958

Claw count  z =  13,483,634,713,119

Cross count  x =  70,752,413,484,809,184

Square count  q =  940,627,482

4Tour count  T_{4} =  16,213,772,192

Maximum degree  d_{max} =  125,310

Maximum left degree  d_{1max} =  125,310

Maximum right degree  d_{2max} =  10,169

Average degree  d =  13.623 4

Average left degree  d_{1} =  35.361 0

Average right degree  d_{2} =  8.436 96

Fill  p =  8.892 88 × 10^{−5}

Average edge multiplicity  m̃ =  2.638 15

Size of LCC  N =  179,403

Diameter  δ =  12

50Percentile effective diameter  δ_{0.5} =  3.403 16

90Percentile effective diameter  δ_{0.9} =  4.379 51

Median distance  δ_{M} =  4

Mean distance  δ_{m} =  3.803 27

Gini coefficient  G =  0.860 083

Balanced inequality ratio  P =  0.140 007

Left balanced inequality ratio  P_{1} =  0.081 596 9

Right balanced inequality ratio  P_{2} =  0.181 053

Relative edge distribution entropy  H_{er} =  0.759 277

Power law exponent  γ =  2.668 43

Tail power law exponent  γ_{t} =  2.471 00

Tail power law exponent with p  γ_{3} =  2.471 00

pvalue  p =  0.000 00

Left tail power law exponent with p  γ_{3,1} =  2.031 00

Left pvalue  p_{1} =  0.000 00

Right tail power law exponent with p  γ_{3,2} =  3.051 00

Right pvalue  p_{2} =  0.002 000 00

Degree assortativity  ρ =  −0.233 375

Degree assortativity pvalue  p_{ρ} =  0.000 00

Spectral norm  α =  5,268.11

Algebraic connectivity  a =  0.056 802 1

Spectral separation  λ_{1}[A] / λ_{2}[A] =  1.084 48

Controllability  C =  142,784

Relative controllability  C_{r} =  0.773 591

Plots
Matrix decompositions plots
Downloads
References
[1]

Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]

[2]

Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
