Wiktionary edits (eo)
This is the bipartite edit network of the Esperanto Wiktionary. It contains
users and pages from the Esperanto Wiktionary, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 112,485
|
Left size | n1 = | 656
|
Right size | n2 = | 111,829
|
Volume | m = | 491,703
|
Unique edge count | m̿ = | 308,454
|
Wedge count | s = | 6,873,859,301
|
Claw count | z = | 143,419,645,164,839
|
Cross count | x = | 2,444,090,790,733,944,320
|
Square count | q = | 3,329,931,885
|
4-Tour count | T4 = | 54,135,511,748
|
Maximum degree | dmax = | 117,281
|
Maximum left degree | d1max = | 117,281
|
Maximum right degree | d2max = | 753
|
Average degree | d = | 8.742 55
|
Average left degree | d1 = | 749.547
|
Average right degree | d2 = | 4.396 92
|
Fill | p = | 0.004 204 67
|
Average edge multiplicity | m̃ = | 1.594 09
|
Size of LCC | N = | 112,125
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 1.720 52
|
90-Percentile effective diameter | δ0.9 = | 3.669 39
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.606 95
|
Gini coefficient | G = | 0.728 654
|
Balanced inequality ratio | P = | 0.222 196
|
Left balanced inequality ratio | P1 = | 0.031 816 0
|
Right balanced inequality ratio | P2 = | 0.331 778
|
Relative edge distribution entropy | Her = | 0.658 638
|
Power law exponent | γ = | 2.191 28
|
Tail power law exponent | γt = | 3.971 00
|
Tail power law exponent with p | γ3 = | 3.971 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.531 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 4.601 00
|
Right p-value | p2 = | 0.043 000 0
|
Degree assortativity | ρ = | −0.386 520
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,270.54
|
Algebraic connectivity | a = | 0.052 636 1
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.115 79
|
Controllability | C = | 111,111
|
Relative controllability | Cr = | 0.988 488
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|