Wikiquote edits (es)
This is the bipartite edit network of the Spanish Wikiquote. It contains users
and pages from the Spanish Wikiquote, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 35,344
|
Left size | n1 = | 7,008
|
Right size | n2 = | 28,336
|
Volume | m = | 202,296
|
Unique edge count | m̿ = | 97,530
|
Wedge count | s = | 108,559,786
|
Claw count | z = | 208,756,205,386
|
Cross count | x = | 402,830,227,113,734
|
Square count | q = | 49,630,326
|
4-Tour count | T4 = | 831,546,260
|
Maximum degree | dmax = | 18,052
|
Maximum left degree | d1max = | 18,052
|
Maximum right degree | d2max = | 3,696
|
Average degree | d = | 11.447 3
|
Average left degree | d1 = | 28.866 4
|
Average right degree | d2 = | 7.139 19
|
Fill | p = | 0.000 491 140
|
Average edge multiplicity | m̃ = | 2.074 19
|
Size of LCC | N = | 33,833
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 3.430 30
|
90-Percentile effective diameter | δ0.9 = | 4.835 01
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.886 89
|
Gini coefficient | G = | 0.831 349
|
Balanced inequality ratio | P = | 0.159 640
|
Left balanced inequality ratio | P1 = | 0.094 253 0
|
Right balanced inequality ratio | P2 = | 0.208 734
|
Relative edge distribution entropy | Her = | 0.774 859
|
Power law exponent | γ = | 2.548 42
|
Tail power law exponent | γt = | 1.921 00
|
Tail power law exponent with p | γ3 = | 1.921 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.741 00
|
Left p-value | p1 = | 0.990 000
|
Right tail power law exponent with p | γ3,2 = | 4.381 00
|
Right p-value | p2 = | 0.126 000
|
Degree assortativity | ρ = | −0.196 106
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,857.33
|
Algebraic connectivity | a = | 0.073 440 5
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.647 80
|
Controllability | C = | 25,500
|
Relative controllability | Cr = | 0.731 770
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|