Wikibooks edits (fa)
This is the bipartite edit network of the Persian Wikibooks. It contains users
and pages from the Persian Wikibooks, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 16,002
|
Left size | n1 = | 1,394
|
Right size | n2 = | 14,608
|
Volume | m = | 59,647
|
Unique edge count | m̿ = | 23,612
|
Wedge count | s = | 21,234,508
|
Claw count | z = | 23,078,747,733
|
Cross count | x = | 20,942,161,413,418
|
Square count | q = | 1,149,145
|
4-Tour count | T4 = | 94,180,080
|
Maximum degree | dmax = | 15,673
|
Maximum left degree | d1max = | 15,673
|
Maximum right degree | d2max = | 700
|
Average degree | d = | 7.454 94
|
Average left degree | d1 = | 42.788 4
|
Average right degree | d2 = | 4.083 17
|
Fill | p = | 0.001 159 52
|
Average edge multiplicity | m̃ = | 2.526 13
|
Size of LCC | N = | 15,559
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.500 34
|
90-Percentile effective diameter | δ0.9 = | 5.350 07
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.989 46
|
Gini coefficient | G = | 0.801 500
|
Balanced inequality ratio | P = | 0.172 565
|
Left balanced inequality ratio | P1 = | 0.108 186
|
Right balanced inequality ratio | P2 = | 0.249 954
|
Relative edge distribution entropy | Her = | 0.753 782
|
Power law exponent | γ = | 3.829 13
|
Tail power law exponent | γt = | 2.031 00
|
Tail power law exponent with p | γ3 = | 2.031 00
|
p-value | p = | 0.240 000
|
Left tail power law exponent with p | γ3,1 = | 1.791 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 3.431 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.254 458
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 706.250
|
Algebraic connectivity | a = | 0.061 662 2
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.120 04
|
Controllability | C = | 13,628
|
Relative controllability | Cr = | 0.855 385
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|