Wikiquote edits (fa)
This is the bipartite edit network of the Persian Wikiquote. It contains users
and pages from the Persian Wikiquote, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 25,584
|
Left size | n1 = | 1,468
|
Right size | n2 = | 24,116
|
Volume | m = | 108,605
|
Unique edge count | m̿ = | 44,554
|
Wedge count | s = | 87,062,393
|
Claw count | z = | 261,523,486,509
|
Cross count | x = | 681,610,327,000,776
|
Square count | q = | 7,251,871
|
4-Tour count | T4 = | 406,366,568
|
Maximum degree | dmax = | 36,102
|
Maximum left degree | d1max = | 36,102
|
Maximum right degree | d2max = | 1,155
|
Average degree | d = | 8.490 07
|
Average left degree | d1 = | 73.981 6
|
Average right degree | d2 = | 4.503 44
|
Fill | p = | 0.001 258 51
|
Average edge multiplicity | m̃ = | 2.437 60
|
Size of LCC | N = | 25,176
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 3.332 25
|
90-Percentile effective diameter | δ0.9 = | 3.952 51
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.606 38
|
Gini coefficient | G = | 0.822 297
|
Balanced inequality ratio | P = | 0.161 351
|
Left balanced inequality ratio | P1 = | 0.066 589 9
|
Right balanced inequality ratio | P2 = | 0.230 680
|
Relative edge distribution entropy | Her = | 0.729 701
|
Power law exponent | γ = | 3.881 38
|
Tail power law exponent | γt = | 2.351 00
|
Tail power law exponent with p | γ3 = | 2.351 00
|
p-value | p = | 0.016 000 0
|
Left tail power law exponent with p | γ3,1 = | 1.751 00
|
Left p-value | p1 = | 0.004 000 00
|
Right tail power law exponent with p | γ3,2 = | 2.431 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.300 458
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,924.22
|
Algebraic connectivity | a = | 0.050 337 3
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.212 29
|
Controllability | C = | 23,102
|
Relative controllability | Cr = | 0.905 251
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|