Wikiquote edits (fa)
This is the bipartite edit network of the Persian Wikisource. It contains users
and pages from the Persian Wikisource, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 31,993
|
Left size | n1 = | 864
|
Right size | n2 = | 31,129
|
Volume | m = | 71,196
|
Unique edge count | m̿ = | 46,994
|
Wedge count | s = | 216,801,789
|
Claw count | z = | 1,040,610,316,706
|
Square count | q = | 30,843,849
|
4-Tour count | T4 = | 1,114,055,460
|
Maximum degree | dmax = | 24,796
|
Maximum left degree | d1max = | 24,796
|
Maximum right degree | d2max = | 328
|
Average degree | d = | 4.450 72
|
Average left degree | d1 = | 82.402 8
|
Average right degree | d2 = | 2.287 13
|
Fill | p = | 0.001 747 28
|
Average edge multiplicity | m̃ = | 1.515 00
|
Size of LCC | N = | 31,183
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.224 80
|
90-Percentile effective diameter | δ0.9 = | 5.294 12
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.522 40
|
Gini coefficient | G = | 0.715 051
|
Balanced inequality ratio | P = | 0.226 867
|
Left balanced inequality ratio | P1 = | 0.058 093 2
|
Right balanced inequality ratio | P2 = | 0.345 160
|
Relative edge distribution entropy | Her = | 0.688 228
|
Power law exponent | γ = | 4.027 65
|
Tail power law exponent | γt = | 4.181 00
|
Tail power law exponent with p | γ3 = | 4.181 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.741 00
|
Left p-value | p1 = | 0.004 000 00
|
Right tail power law exponent with p | γ3,2 = | 4.711 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.174 507
|
Degree assortativity p-value | pρ = | 5.631 80 × 10−318
|
Spectral norm | α = | 755.929
|
Algebraic connectivity | a = | 0.023 038 4
|
Spectral separation | |λ1[A] / λ2[A]| = | 3.562 80
|
Controllability | C = | 30,209
|
Relative controllability | Cr = | 0.950 237
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|