Wikipedia edits (ff)
This is the bipartite edit network of the Fulah Wikipedia. It contains users
and pages from the Fulah Wikipedia, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 2,330
|
Left size | n1 = | 618
|
Right size | n2 = | 1,712
|
Volume | m = | 15,753
|
Unique edge count | m̿ = | 6,821
|
Wedge count | s = | 443,123
|
Claw count | z = | 27,923,568
|
Cross count | x = | 1,728,424,597
|
Square count | q = | 1,103,604
|
4-Tour count | T4 = | 10,617,894
|
Maximum degree | dmax = | 1,301
|
Maximum left degree | d1max = | 1,301
|
Maximum right degree | d2max = | 232
|
Average degree | d = | 13.521 9
|
Average left degree | d1 = | 25.490 3
|
Average right degree | d2 = | 9.201 52
|
Fill | p = | 0.006 446 97
|
Average edge multiplicity | m̃ = | 2.309 49
|
Size of LCC | N = | 1,744
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.733 71
|
90-Percentile effective diameter | δ0.9 = | 5.993 63
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.477 22
|
Gini coefficient | G = | 0.807 277
|
Balanced inequality ratio | P = | 0.168 349
|
Left balanced inequality ratio | P1 = | 0.116 930
|
Right balanced inequality ratio | P2 = | 0.176 601
|
Relative edge distribution entropy | Her = | 0.826 885
|
Power law exponent | γ = | 2.364 62
|
Tail power law exponent | γt = | 2.401 00
|
Tail power law exponent with p | γ3 = | 2.401 00
|
p-value | p = | 0.066 000 0
|
Left tail power law exponent with p | γ3,1 = | 1.701 00
|
Left p-value | p1 = | 0.056 000 0
|
Right tail power law exponent with p | γ3,2 = | 3.291 00
|
Right p-value | p2 = | 0.047 000 0
|
Degree assortativity | ρ = | −0.037 953 1
|
Degree assortativity p-value | pρ = | 0.001 718 08
|
Spectral norm | α = | 190.517
|
Algebraic connectivity | a = | 0.017 774 1
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.530 53
|
Controllability | C = | 1,148
|
Relative controllability | Cr = | 0.497 400
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|