Wikiquote edits (fi)
This is the bipartite edit network of the Finnish Wikiquote. It contains users
and pages from the Finnish Wikiquote, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 6,780
|
Left size | n1 = | 1,115
|
Right size | n2 = | 5,665
|
Volume | m = | 45,194
|
Unique edge count | m̿ = | 23,338
|
Wedge count | s = | 6,568,329
|
Claw count | z = | 2,982,999,050
|
Cross count | x = | 1,443,369,958,247
|
Square count | q = | 4,648,659
|
4-Tour count | T4 = | 63,519,760
|
Maximum degree | dmax = | 8,146
|
Maximum left degree | d1max = | 8,146
|
Maximum right degree | d2max = | 750
|
Average degree | d = | 13.331 6
|
Average left degree | d1 = | 40.532 7
|
Average right degree | d2 = | 7.977 76
|
Fill | p = | 0.003 694 78
|
Average edge multiplicity | m̃ = | 1.936 50
|
Size of LCC | N = | 6,544
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.352 99
|
90-Percentile effective diameter | δ0.9 = | 4.808 84
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.751 74
|
Gini coefficient | G = | 0.795 667
|
Balanced inequality ratio | P = | 0.179 493
|
Left balanced inequality ratio | P1 = | 0.106 895
|
Right balanced inequality ratio | P2 = | 0.246 670
|
Relative edge distribution entropy | Her = | 0.800 165
|
Power law exponent | γ = | 2.134 38
|
Tail power law exponent | γt = | 2.061 00
|
Tail power law exponent with p | γ3 = | 2.061 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.661 00
|
Left p-value | p1 = | 0.009 000 00
|
Right tail power law exponent with p | γ3,2 = | 2.271 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.288 420
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 656.206
|
Algebraic connectivity | a = | 0.023 115 2
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.219 82
|
Controllability | C = | 4,974
|
Relative controllability | Cr = | 0.739 628
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|