Wiktionary edits (fj)
This is the bipartite edit network of the Fijian Wiktionary. It contains users
and pages from the Fijian Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 32,313
|
Left size | n1 = | 244
|
Right size | n2 = | 32,069
|
Volume | m = | 170,714
|
Unique edge count | m̿ = | 101,756
|
Wedge count | s = | 699,012,088
|
Claw count | z = | 4,001,200,345,792
|
Cross count | x = | 18,879,472,672,848,248
|
Square count | q = | 402,542,813
|
4-Tour count | T4 = | 6,016,594,676
|
Maximum degree | dmax = | 46,242
|
Maximum left degree | d1max = | 46,242
|
Maximum right degree | d2max = | 116
|
Average degree | d = | 10.566 3
|
Average left degree | d1 = | 699.648
|
Average right degree | d2 = | 5.323 33
|
Fill | p = | 0.013 004 2
|
Average edge multiplicity | m̃ = | 1.677 68
|
Size of LCC | N = | 31,975
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 1.606 02
|
90-Percentile effective diameter | δ0.9 = | 3.442 43
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.364 34
|
Gini coefficient | G = | 0.682 263
|
Balanced inequality ratio | P = | 0.249 824
|
Left balanced inequality ratio | P1 = | 0.030 624 3
|
Right balanced inequality ratio | P2 = | 0.363 339
|
Relative edge distribution entropy | Her = | 0.669 874
|
Power law exponent | γ = | 1.972 71
|
Tail power law exponent | γt = | 5.461 00
|
Tail power law exponent with p | γ3 = | 5.461 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.611 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 8.991 00
|
Right p-value | p2 = | 0.985 000
|
Degree assortativity | ρ = | −0.327 427
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 494.483
|
Algebraic connectivity | a = | 0.019 326 2
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.798 25
|
Controllability | C = | 31,797
|
Relative controllability | Cr = | 0.985 434
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|