Wikibooks edits (fr)
This is the bipartite edit network of the French Wikibooks. It contains users
and pages from the French Wikibooks, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 58,395
|
Left size | n1 = | 10,072
|
Right size | n2 = | 48,323
|
Volume | m = | 409,932
|
Unique edge count | m̿ = | 139,212
|
Wedge count | s = | 268,744,416
|
Claw count | z = | 794,487,756,016
|
Cross count | x = | 2,051,696,633,699,377
|
Square count | q = | 42,197,393
|
4-Tour count | T4 = | 1,412,944,632
|
Maximum degree | dmax = | 64,915
|
Maximum left degree | d1max = | 64,915
|
Maximum right degree | d2max = | 2,641
|
Average degree | d = | 14.040 0
|
Average left degree | d1 = | 40.700 2
|
Average right degree | d2 = | 8.483 17
|
Fill | p = | 0.000 286 027
|
Average edge multiplicity | m̃ = | 2.944 66
|
Size of LCC | N = | 56,884
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.431 63
|
90-Percentile effective diameter | δ0.9 = | 4.570 84
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.829 50
|
Gini coefficient | G = | 0.837 187
|
Balanced inequality ratio | P = | 0.157 261
|
Left balanced inequality ratio | P1 = | 0.088 619 6
|
Right balanced inequality ratio | P2 = | 0.208 808
|
Relative edge distribution entropy | Her = | 0.777 066
|
Power law exponent | γ = | 2.568 05
|
Tail power law exponent | γt = | 2.301 00
|
Tail power law exponent with p | γ3 = | 2.301 00
|
p-value | p = | 0.317 000
|
Left tail power law exponent with p | γ3,1 = | 1.801 00
|
Left p-value | p1 = | 0.005 000 00
|
Right tail power law exponent with p | γ3,2 = | 2.491 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.219 842
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 4,409.38
|
Algebraic connectivity | a = | 0.009 431 85
|
Spectral separation | |λ1[A] / λ2[A]| = | 3.445 56
|
Controllability | C = | 47,168
|
Relative controllability | Cr = | 0.814 505
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|