Wiktionary edits (gl)
This is the bipartite edit network of the Galician Wiktionary. It contains
users and pages from the Galician Wiktionary, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 62,438
|
Left size | n1 = | 683
|
Right size | n2 = | 61,755
|
Volume | m = | 602,781
|
Unique edge count | m̿ = | 310,026
|
Wedge count | s = | 2,344,041,546
|
Claw count | z = | 15,704,506,807,565
|
Square count | q = | 2,972,259,004
|
4-Tour count | T4 = | 33,154,915,372
|
Maximum degree | dmax = | 123,926
|
Maximum left degree | d1max = | 123,926
|
Maximum right degree | d2max = | 1,090
|
Average degree | d = | 19.308 1
|
Average left degree | d1 = | 882.549
|
Average right degree | d2 = | 9.760 85
|
Fill | p = | 0.007 350 30
|
Average edge multiplicity | m̃ = | 1.944 29
|
Size of LCC | N = | 62,140
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 1.889 38
|
90-Percentile effective diameter | δ0.9 = | 3.772 44
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.861 78
|
Gini coefficient | G = | 0.756 004
|
Balanced inequality ratio | P = | 0.217 318
|
Left balanced inequality ratio | P1 = | 0.033 229 3
|
Right balanced inequality ratio | P2 = | 0.305 365
|
Relative edge distribution entropy | Her = | 0.700 652
|
Power law exponent | γ = | 1.769 36
|
Tail power law exponent | γt = | 4.161 00
|
Tail power law exponent with p | γ3 = | 4.161 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.531 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 8.351 00
|
Right p-value | p2 = | 0.626 000
|
Degree assortativity | ρ = | −0.143 290
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,033.07
|
Algebraic connectivity | a = | 0.042 824 0
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.638 96
|
Controllability | C = | 61,126
|
Relative controllability | Cr = | 0.979 740
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|