Wikipedia edits (haw)
This is the bipartite edit network of the Hawaiian Wikipedia. It contains users
and pages from the Hawaiian Wikipedia, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 4,784
|
Left size | n1 = | 844
|
Right size | n2 = | 3,940
|
Volume | m = | 65,031
|
Unique edge count | m̿ = | 32,164
|
Wedge count | s = | 13,325,652
|
Claw count | z = | 5,656,146,038
|
Cross count | x = | 2,082,466,998,729
|
Square count | q = | 49,603,367
|
4-Tour count | T4 = | 450,200,324
|
Maximum degree | dmax = | 7,028
|
Maximum left degree | d1max = | 7,028
|
Maximum right degree | d2max = | 311
|
Average degree | d = | 27.186 9
|
Average left degree | d1 = | 77.050 9
|
Average right degree | d2 = | 16.505 3
|
Fill | p = | 0.009 672 34
|
Average edge multiplicity | m̃ = | 2.021 86
|
Size of LCC | N = | 4,117
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.378 97
|
90-Percentile effective diameter | δ0.9 = | 5.480 77
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.883 33
|
Gini coefficient | G = | 0.791 394
|
Balanced inequality ratio | P = | 0.198 367
|
Left balanced inequality ratio | P1 = | 0.075 379 4
|
Right balanced inequality ratio | P2 = | 0.262 552
|
Relative edge distribution entropy | Her = | 0.792 599
|
Power law exponent | γ = | 1.754 15
|
Tail power law exponent | γt = | 1.871 00
|
Tail power law exponent with p | γ3 = | 1.871 00
|
p-value | p = | 0.037 000 0
|
Left tail power law exponent with p | γ3,1 = | 1.631 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 3.261 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.232 760
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 419.288
|
Algebraic connectivity | a = | 0.029 770 0
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.748 11
|
Controllability | C = | 3,150
|
Relative controllability | Cr = | 0.669 643
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|