Wikibooks edits (he)
This is the bipartite edit network of the Hebrew Wikibooks. It contains users
and pages from the Hebrew Wikibooks, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 18,548
|
Left size | n1 = | 1,802
|
Right size | n2 = | 16,746
|
Volume | m = | 100,052
|
Unique edge count | m̿ = | 36,655
|
Wedge count | s = | 35,568,265
|
Claw count | z = | 61,856,315,274
|
Cross count | x = | 100,413,850,677,564
|
Square count | q = | 3,015,983
|
4-Tour count | T4 = | 166,496,766
|
Maximum degree | dmax = | 17,205
|
Maximum left degree | d1max = | 17,205
|
Maximum right degree | d2max = | 1,499
|
Average degree | d = | 10.788 4
|
Average left degree | d1 = | 55.522 8
|
Average right degree | d2 = | 5.974 68
|
Fill | p = | 0.001 214 70
|
Average edge multiplicity | m̃ = | 2.729 56
|
Size of LCC | N = | 17,893
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.318 48
|
90-Percentile effective diameter | δ0.9 = | 3.993 38
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.594 14
|
Gini coefficient | G = | 0.794 040
|
Balanced inequality ratio | P = | 0.181 745
|
Left balanced inequality ratio | P1 = | 0.087 214 6
|
Right balanced inequality ratio | P2 = | 0.258 865
|
Relative edge distribution entropy | Her = | 0.774 342
|
Power law exponent | γ = | 2.682 43
|
Tail power law exponent | γt = | 2.751 00
|
Tail power law exponent with p | γ3 = | 2.751 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.761 00
|
Left p-value | p1 = | 0.721 000
|
Right tail power law exponent with p | γ3,2 = | 3.401 00
|
Right p-value | p2 = | 0.261 000
|
Degree assortativity | ρ = | −0.155 873
|
Degree assortativity p-value | pρ = | 4.583 25 × 10−198
|
Spectral norm | α = | 542.005
|
Algebraic connectivity | a = | 0.028 913 5
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.181 81
|
Controllability | C = | 15,091
|
Relative controllability | Cr = | 0.828 766
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|