Wikiquote edits (he)
This is the bipartite edit network of the Hebrew Wikiquote. It contains users
and pages from the Hebrew Wikiquote, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 12,989
|
Left size | n1 = | 2,122
|
Right size | n2 = | 10,867
|
Volume | m = | 87,673
|
Unique edge count | m̿ = | 38,613
|
Wedge count | s = | 26,668,512
|
Claw count | z = | 29,910,395,541
|
Cross count | x = | 33,839,649,687,841
|
Square count | q = | 13,465,596
|
4-Tour count | T4 = | 214,508,058
|
Maximum degree | dmax = | 10,044
|
Maximum left degree | d1max = | 10,044
|
Maximum right degree | d2max = | 1,911
|
Average degree | d = | 13.499 6
|
Average left degree | d1 = | 41.316 2
|
Average right degree | d2 = | 8.067 82
|
Fill | p = | 0.001 674 47
|
Average edge multiplicity | m̃ = | 2.270 56
|
Size of LCC | N = | 12,493
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 3.129 70
|
90-Percentile effective diameter | δ0.9 = | 4.113 30
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.438 28
|
Gini coefficient | G = | 0.805 226
|
Balanced inequality ratio | P = | 0.176 183
|
Left balanced inequality ratio | P1 = | 0.088 476 5
|
Right balanced inequality ratio | P2 = | 0.234 280
|
Relative edge distribution entropy | Her = | 0.779 346
|
Power law exponent | γ = | 2.209 25
|
Tail power law exponent | γt = | 2.111 00
|
Tail power law exponent with p | γ3 = | 2.111 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.791 00
|
Left p-value | p1 = | 0.027 000 0
|
Right tail power law exponent with p | γ3,2 = | 4.081 00
|
Right p-value | p2 = | 0.216 000
|
Degree assortativity | ρ = | −0.232 813
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 626.949
|
Algebraic connectivity | a = | 0.030 681 7
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.248 77
|
Controllability | C = | 9,576
|
Relative controllability | Cr = | 0.745 794
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|