Wiktionary edits (hr)
This is the bipartite edit network of the Croatian Wiktionary. It contains
users and pages from the Croatian Wiktionary, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 41,101
|
Left size | n1 = | 583
|
Right size | n2 = | 40,518
|
Volume | m = | 224,685
|
Unique edge count | m̿ = | 141,028
|
Wedge count | s = | 628,549,181
|
Claw count | z = | 2,476,611,271,872
|
Cross count | x = | 8,071,668,109,675,592
|
Square count | q = | 435,175,802
|
4-Tour count | T4 = | 5,995,885,320
|
Maximum degree | dmax = | 36,197
|
Maximum left degree | d1max = | 36,197
|
Maximum right degree | d2max = | 285
|
Average degree | d = | 10.933 3
|
Average left degree | d1 = | 385.395
|
Average right degree | d2 = | 5.545 31
|
Fill | p = | 0.005 970 20
|
Average edge multiplicity | m̃ = | 1.593 19
|
Size of LCC | N = | 40,467
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.091 10
|
90-Percentile effective diameter | δ0.9 = | 3.858 32
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.147 15
|
Gini coefficient | G = | 0.757 044
|
Balanced inequality ratio | P = | 0.210 444
|
Left balanced inequality ratio | P1 = | 0.049 166 6
|
Right balanced inequality ratio | P2 = | 0.302 486
|
Relative edge distribution entropy | Her = | 0.701 767
|
Power law exponent | γ = | 2.024 66
|
Tail power law exponent | γt = | 4.111 00
|
Tail power law exponent with p | γ3 = | 4.111 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.531 00
|
Left p-value | p1 = | 0.005 000 00
|
Right tail power law exponent with p | γ3,2 = | 5.411 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.235 669
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 523.946
|
Algebraic connectivity | a = | 0.020 819 1
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.719 09
|
Controllability | C = | 39,579
|
Relative controllability | Cr = | 0.972 911
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|