Wikiquote edits (hu)
This is the bipartite edit network of the Hungarian Wikiquote. It contains
users and pages from the Hungarian Wikiquote, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 5,720
|
Left size | n1 = | 882
|
Right size | n2 = | 4,838
|
Volume | m = | 37,038
|
Unique edge count | m̿ = | 14,241
|
Wedge count | s = | 4,566,198
|
Claw count | z = | 2,585,695,443
|
Cross count | x = | 1,421,493,352,663
|
Square count | q = | 1,439,520
|
4-Tour count | T4 = | 29,816,546
|
Maximum degree | dmax = | 11,005
|
Maximum left degree | d1max = | 11,005
|
Maximum right degree | d2max = | 1,026
|
Average degree | d = | 12.950 3
|
Average left degree | d1 = | 41.993 2
|
Average right degree | d2 = | 7.655 64
|
Fill | p = | 0.003 337 38
|
Average edge multiplicity | m̃ = | 2.600 80
|
Size of LCC | N = | 5,469
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 3.313 98
|
90-Percentile effective diameter | δ0.9 = | 4.574 83
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.669 56
|
Gini coefficient | G = | 0.812 495
|
Balanced inequality ratio | P = | 0.172 701
|
Left balanced inequality ratio | P1 = | 0.092 013 6
|
Right balanced inequality ratio | P2 = | 0.230 277
|
Relative edge distribution entropy | Her = | 0.794 719
|
Power law exponent | γ = | 2.379 64
|
Tail power law exponent | γt = | 2.061 00
|
Tail power law exponent with p | γ3 = | 2.061 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.751 00
|
Left p-value | p1 = | 0.070 000 0
|
Right tail power law exponent with p | γ3,2 = | 5.011 00
|
Right p-value | p2 = | 0.623 000
|
Degree assortativity | ρ = | −0.196 948
|
Degree assortativity p-value | pρ = | 1.620 74 × 10−124
|
Spectral norm | α = | 1,351.53
|
Algebraic connectivity | a = | 0.039 621 3
|
Spectral separation | |λ1[A] / λ2[A]| = | 4.086 26
|
Controllability | C = | 4,176
|
Relative controllability | Cr = | 0.734 435
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|