Wikiquote edits (hu)
This is the bipartite edit network of the Hungarian Wikisource. It contains
users and pages from the Hungarian Wikisource, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 36,229
|
Left size | n1 = | 481
|
Right size | n2 = | 35,748
|
Volume | m = | 82,236
|
Unique edge count | m̿ = | 54,617
|
Wedge count | s = | 295,465,417
|
Claw count | z = | 1,592,257,684,539
|
Cross count | x = | 7,088,669,024,850,621
|
Square count | q = | 47,974,185
|
4-Tour count | T4 = | 1,565,772,010
|
Maximum degree | dmax = | 29,244
|
Maximum left degree | d1max = | 29,244
|
Maximum right degree | d2max = | 592
|
Average degree | d = | 4.539 79
|
Average left degree | d1 = | 170.969
|
Average right degree | d2 = | 2.300 44
|
Fill | p = | 0.003 176 37
|
Average edge multiplicity | m̃ = | 1.505 69
|
Size of LCC | N = | 35,756
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.272 82
|
90-Percentile effective diameter | δ0.9 = | 5.039 69
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.551 76
|
Gini coefficient | G = | 0.710 930
|
Balanced inequality ratio | P = | 0.229 285
|
Left balanced inequality ratio | P1 = | 0.046 184 2
|
Right balanced inequality ratio | P2 = | 0.354 054
|
Relative edge distribution entropy | Her = | 0.670 367
|
Power law exponent | γ = | 3.896 61
|
Tail power law exponent | γt = | 4.851 00
|
Tail power law exponent with p | γ3 = | 4.851 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.631 00
|
Left p-value | p1 = | 0.164 000
|
Right tail power law exponent with p | γ3,2 = | 3.701 00
|
Right p-value | p2 = | 0.965 000
|
Degree assortativity | ρ = | −0.156 613
|
Degree assortativity p-value | pρ = | 6.673 21 × 10−297
|
Spectral norm | α = | 876.717
|
Algebraic connectivity | a = | 0.010 556 9
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.924 72
|
Controllability | C = | 35,173
|
Relative controllability | Cr = | 0.975 213
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|