Wiktionary edits (is)
This is the bipartite edit network of the Icelandic Wiktionary. It contains
users and pages from the Icelandic Wiktionary, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 27,047
|
Left size | n1 = | 829
|
Right size | n2 = | 26,218
|
Volume | m = | 236,424
|
Unique edge count | m̿ = | 118,562
|
Wedge count | s = | 479,915,119
|
Claw count | z = | 2,019,748,844,172
|
Cross count | x = | 7,146,454,150,366,240
|
Square count | q = | 475,067,977
|
4-Tour count | T4 = | 5,720,518,140
|
Maximum degree | dmax = | 56,186
|
Maximum left degree | d1max = | 56,186
|
Maximum right degree | d2max = | 1,267
|
Average degree | d = | 17.482 5
|
Average left degree | d1 = | 285.192
|
Average right degree | d2 = | 9.017 62
|
Fill | p = | 0.005 454 96
|
Average edge multiplicity | m̃ = | 1.994 10
|
Size of LCC | N = | 26,822
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 1.877 86
|
90-Percentile effective diameter | δ0.9 = | 3.867 56
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.927 97
|
Gini coefficient | G = | 0.743 796
|
Balanced inequality ratio | P = | 0.218 040
|
Left balanced inequality ratio | P1 = | 0.046 467 4
|
Right balanced inequality ratio | P2 = | 0.319 481
|
Relative edge distribution entropy | Her = | 0.715 374
|
Power law exponent | γ = | 1.848 48
|
Tail power law exponent | γt = | 1.581 00
|
Tail power law exponent with p | γ3 = | 1.581 00
|
p-value | p = | 0.687 000
|
Left tail power law exponent with p | γ3,1 = | 1.551 00
|
Left p-value | p1 = | 0.004 000 00
|
Right tail power law exponent with p | γ3,2 = | 5.061 00
|
Right p-value | p2 = | 0.294 000
|
Degree assortativity | ρ = | −0.343 839
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 1,010.09
|
Algebraic connectivity | a = | 0.048 690 1
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.797 41
|
Controllability | C = | 25,457
|
Relative controllability | Cr = | 0.942 468
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|