Wikipedia edits (jbo)

This is the bipartite edit network of the Lojban Wikipedia. It contains users and pages from the Lojban Wikipedia, connected by edit events. Each edge represents an edit. The dataset includes the timestamp of each edit.

Metadata

Codejbo
Internal nameedit-jbowiki
NameWikipedia edits (jbo)
Data sourcehttp://dumps.wikimedia.org/
AvailabilityDataset is available for download
Consistency checkDataset passed all tests
Category
Authorship network
Dataset timestamp 2017-10-20
Node meaningUser, article
Edge meaningEdit
Network formatBipartite, undirected
Edge typeUnweighted, multiple edges
Temporal data Edges are annotated with timestamps

Statistics

Size n =6,365
Left size n1 =908
Right size n2 =5,457
Volume m =100,039
Unique edge count m̿ =44,485
Wedge count s =15,562,394
Claw count z =4,897,746,065
Cross count x =1,376,477,438,949
Square count q =77,287,790
4-Tour count T4 =680,663,374
Maximum degree dmax =7,477
Maximum left degree d1max =7,477
Maximum right degree d2max =325
Average degree d =31.434 1
Average left degree d1 =110.175
Average right degree d2 =18.332 2
Fill p =0.008 977 88
Average edge multiplicity m̃ =2.248 83
Size of LCC N =5,678
Diameter δ =13
50-Percentile effective diameter δ0.5 =3.350 18
90-Percentile effective diameter δ0.9 =4.794 51
Median distance δM =4
Mean distance δm =3.731 01
Gini coefficient G =0.839 313
Balanced inequality ratio P =0.167 870
Left balanced inequality ratio P1 =0.078 279 5
Right balanced inequality ratio P2 =0.195 744
Relative edge distribution entropy Her =0.789 222
Power law exponent γ =1.866 34
Tail power law exponent γt =1.611 00
Tail power law exponent with p γ3 =1.611 00
p-value p =0.000 00
Left tail power law exponent with p γ3,1 =1.581 00
Left p-value p1 =0.000 00
Right tail power law exponent with p γ3,2 =6.001 00
Right p-value p2 =0.069 000 0
Degree assortativity ρ =−0.051 786 4
Degree assortativity p-value pρ =8.326 36 × 10−28
Spectral norm α =510.363
Spectral separation 1[A] / λ2[A]| =2.394 81
Controllability C =4,574
Relative controllability Cr =0.725 571

Plots

Fruchterman–Reingold graph drawing

Degree distribution

Cumulative degree distribution

Lorenz curve

Spectral distribution of the adjacency matrix

Spectral distribution of the normalized adjacency matrix

Spectral distribution of the Laplacian

Spectral graph drawing based on the Laplacian

Spectral graph drawing based on the normalized adjacency matrix

Degree assortativity

Zipf plot

Hop distribution

Double Laplacian graph drawing

Delaunay graph drawing

Edge weight/multiplicity distribution

Temporal distribution

Temporal hop distribution

Diameter/density evolution

Matrix decompositions plots

Downloads

References

[1] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proc. Int. Conf. on World Wide Web Companion, pages 1343–1350, 2013. [ http ]
[2] Wikimedia Foundation. Wikimedia downloads. http://dumps.wikimedia.org/, January 2010.