Wikipedia edits (kab)
This is the bipartite edit network of the Kabyle Wikipedia. It contains users
and pages from the Kabyle Wikipedia, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 11,662
|
Left size | n1 = | 878
|
Right size | n2 = | 10,784
|
Volume | m = | 58,677
|
Unique edge count | m̿ = | 27,893
|
Wedge count | s = | 10,828,007
|
Claw count | z = | 5,919,966,109
|
Cross count | x = | 3,144,297,762,425
|
Square count | q = | 9,947,671
|
4-Tour count | T4 = | 122,976,610
|
Maximum degree | dmax = | 4,362
|
Maximum left degree | d1max = | 4,362
|
Maximum right degree | d2max = | 255
|
Average degree | d = | 10.062 9
|
Average left degree | d1 = | 66.830 3
|
Average right degree | d2 = | 5.441 12
|
Fill | p = | 0.002 945 92
|
Average edge multiplicity | m̃ = | 2.103 65
|
Size of LCC | N = | 10,237
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 3.483 88
|
90-Percentile effective diameter | δ0.9 = | 4.660 67
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.926 75
|
Gini coefficient | G = | 0.853 755
|
Balanced inequality ratio | P = | 0.134 116
|
Left balanced inequality ratio | P1 = | 0.089 779 6
|
Right balanced inequality ratio | P2 = | 0.201 152
|
Relative edge distribution entropy | Her = | 0.764 465
|
Power law exponent | γ = | 2.999 41
|
Tail power law exponent | γt = | 2.091 00
|
Tail power law exponent with p | γ3 = | 2.091 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.621 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 2.171 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.472 163
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 340.890
|
Algebraic connectivity | a = | 0.077 151 6
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.976 70
|
Controllability | C = | 9,096
|
Relative controllability | Cr = | 0.847 006
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|