Wiktionary edits (kk)
This is the bipartite edit network of the Kazakh Wiktionary. It contains users
and pages from the Kazakh Wiktionary, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 8,546
|
Left size | n1 = | 355
|
Right size | n2 = | 8,191
|
Volume | m = | 88,160
|
Unique edge count | m̿ = | 37,930
|
Wedge count | s = | 51,232,410
|
Claw count | z = | 58,331,463,479
|
Cross count | x = | 55,771,911,095,734
|
Square count | q = | 115,160,324
|
4-Tour count | T4 = | 1,126,303,648
|
Maximum degree | dmax = | 21,492
|
Maximum left degree | d1max = | 21,492
|
Maximum right degree | d2max = | 147
|
Average degree | d = | 20.631 9
|
Average left degree | d1 = | 248.338
|
Average right degree | d2 = | 10.763 0
|
Fill | p = | 0.013 044 2
|
Average edge multiplicity | m̃ = | 2.324 28
|
Size of LCC | N = | 7,869
|
Diameter | δ = | 17
|
50-Percentile effective diameter | δ0.5 = | 1.945 16
|
90-Percentile effective diameter | δ0.9 = | 3.976 94
|
Median distance | δM = | 2
|
Mean distance | δm = | 3.142 17
|
Gini coefficient | G = | 0.780 515
|
Balanced inequality ratio | P = | 0.206 965
|
Left balanced inequality ratio | P1 = | 0.039 916 1
|
Right balanced inequality ratio | P2 = | 0.275 862
|
Relative edge distribution entropy | Her = | 0.719 660
|
Power law exponent | γ = | 1.870 30
|
Tail power law exponent | γt = | 4.821 00
|
Tail power law exponent with p | γ3 = | 4.821 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.661 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 8.991 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | +0.036 516 9
|
Degree assortativity p-value | pρ = | 1.127 01 × 10−12
|
Spectral norm | α = | 560.152
|
Algebraic connectivity | a = | 0.006 822 69
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.698 72
|
Controllability | C = | 7,503
|
Relative controllability | Cr = | 0.915 782
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|