Wikipedia edits (kl)
This is the bipartite edit network of the Kalaallisut Wikipedia. It contains
users and pages from the Kalaallisut Wikipedia, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 4,880
|
Left size | n1 = | 990
|
Right size | n2 = | 3,890
|
Volume | m = | 61,687
|
Unique edge count | m̿ = | 29,942
|
Wedge count | s = | 9,102,928
|
Claw count | z = | 2,779,576,374
|
Cross count | x = | 765,151,406,124
|
Square count | q = | 25,068,098
|
4-Tour count | T4 = | 237,026,400
|
Maximum degree | dmax = | 5,427
|
Maximum left degree | d1max = | 5,427
|
Maximum right degree | d2max = | 244
|
Average degree | d = | 25.281 6
|
Average left degree | d1 = | 62.310 1
|
Average right degree | d2 = | 15.857 8
|
Fill | p = | 0.007 774 92
|
Average edge multiplicity | m̃ = | 2.060 22
|
Size of LCC | N = | 4,175
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.364 01
|
90-Percentile effective diameter | δ0.9 = | 5.173 37
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.817 89
|
Gini coefficient | G = | 0.786 625
|
Balanced inequality ratio | P = | 0.196 411
|
Left balanced inequality ratio | P1 = | 0.075 364 3
|
Right balanced inequality ratio | P2 = | 0.257 364
|
Relative edge distribution entropy | Her = | 0.802 550
|
Power law exponent | γ = | 1.790 15
|
Tail power law exponent | γt = | 2.611 00
|
Tail power law exponent with p | γ3 = | 2.611 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.581 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 3.611 00
|
Right p-value | p2 = | 0.002 000 00
|
Degree assortativity | ρ = | −0.131 841
|
Degree assortativity p-value | pρ = | 3.486 32 × 10−116
|
Spectral norm | α = | 360.555
|
Algebraic connectivity | a = | 0.026 124 5
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.869 20
|
Controllability | C = | 2,987
|
Relative controllability | Cr = | 0.619 581
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|