Wiktionary edits (kl)
This is the bipartite edit network of the Kalaallisut Wiktionary. It contains
users and pages from the Kalaallisut Wiktionary, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 2,597
|
Left size | n1 = | 210
|
Right size | n2 = | 2,387
|
Volume | m = | 17,251
|
Unique edge count | m̿ = | 8,919
|
Wedge count | s = | 2,543,694
|
Claw count | z = | 647,004,437
|
Cross count | x = | 142,682,495,973
|
Square count | q = | 3,295,603
|
4-Tour count | T4 = | 36,557,746
|
Maximum degree | dmax = | 3,607
|
Maximum left degree | d1max = | 3,607
|
Maximum right degree | d2max = | 112
|
Average degree | d = | 13.285 3
|
Average left degree | d1 = | 82.147 6
|
Average right degree | d2 = | 7.227 06
|
Fill | p = | 0.017 792 8
|
Average edge multiplicity | m̃ = | 1.934 19
|
Size of LCC | N = | 2,230
|
Diameter | δ = | 14
|
50-Percentile effective diameter | δ0.5 = | 3.049 65
|
90-Percentile effective diameter | δ0.9 = | 5.408 74
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.442 92
|
Gini coefficient | G = | 0.763 362
|
Balanced inequality ratio | P = | 0.208 423
|
Left balanced inequality ratio | P1 = | 0.065 735 3
|
Right balanced inequality ratio | P2 = | 0.278 651
|
Relative edge distribution entropy | Her = | 0.764 379
|
Power law exponent | γ = | 2.010 91
|
Tail power law exponent | γt = | 3.141 00
|
Tail power law exponent with p | γ3 = | 3.141 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.611 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 8.991 00
|
Right p-value | p2 = | 0.151 000
|
Degree assortativity | ρ = | +0.098 737 4
|
Degree assortativity p-value | pρ = | 9.073 10 × 10−21
|
Spectral norm | α = | 201.534
|
Algebraic connectivity | a = | 0.007 650 30
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.560 63
|
Controllability | C = | 2,140
|
Relative controllability | Cr = | 0.838 558
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|