Wikibooks edits (ko)
This is the bipartite edit network of the Korean Wikibooks. It contains users
and pages from the Korean Wikibooks, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 6,633
|
Left size | n1 = | 592
|
Right size | n2 = | 6,041
|
Volume | m = | 22,016
|
Unique edge count | m̿ = | 9,749
|
Wedge count | s = | 5,695,692
|
Claw count | z = | 4,189,434,370
|
Cross count | x = | 2,499,440,782,190
|
Square count | q = | 474,275
|
4-Tour count | T4 = | 26,609,558
|
Maximum degree | dmax = | 4,753
|
Maximum left degree | d1max = | 4,753
|
Maximum right degree | d2max = | 240
|
Average degree | d = | 6.638 32
|
Average left degree | d1 = | 37.189 2
|
Average right degree | d2 = | 3.644 43
|
Fill | p = | 0.002 726 02
|
Average edge multiplicity | m̃ = | 2.258 28
|
Size of LCC | N = | 5,973
|
Diameter | δ = | 13
|
50-Percentile effective diameter | δ0.5 = | 3.365 62
|
90-Percentile effective diameter | δ0.9 = | 5.286 23
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.763 85
|
Gini coefficient | G = | 0.773 915
|
Balanced inequality ratio | P = | 0.190 748
|
Left balanced inequality ratio | P1 = | 0.104 560
|
Right balanced inequality ratio | P2 = | 0.275 027
|
Relative edge distribution entropy | Her = | 0.759 571
|
Power law exponent | γ = | 3.410 00
|
Tail power law exponent | γt = | 2.891 00
|
Tail power law exponent with p | γ3 = | 2.891 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.751 00
|
Left p-value | p1 = | 0.970 000
|
Right tail power law exponent with p | γ3,2 = | 3.691 00
|
Right p-value | p2 = | 0.236 000
|
Degree assortativity | ρ = | −0.214 417
|
Degree assortativity p-value | pρ = | 9.129 06 × 10−102
|
Spectral norm | α = | 332.497
|
Algebraic connectivity | a = | 0.030 861 0
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.492 99
|
Controllability | C = | 5,276
|
Relative controllability | Cr = | 0.829 821
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|