Wikipedia edits (krc)
This is the bipartite edit network of the Karachay-Balkar Wikipedia. It
contains users and pages from the Karachay-Balkar Wikipedia, connected by edit
events. Each edge represents an edit. The dataset includes the timestamp of
each edit.
Metadata
Statistics
Size | n = | 13,944
|
Left size | n1 = | 665
|
Right size | n2 = | 13,279
|
Volume | m = | 100,023
|
Unique edge count | m̿ = | 49,445
|
Wedge count | s = | 67,826,352
|
Claw count | z = | 146,096,187,855
|
Cross count | x = | 310,781,482,896,884
|
Square count | q = | 57,183,431
|
4-Tour count | T4 = | 728,964,578
|
Maximum degree | dmax = | 22,048
|
Maximum left degree | d1max = | 22,048
|
Maximum right degree | d2max = | 761
|
Average degree | d = | 14.346 4
|
Average left degree | d1 = | 150.411
|
Average right degree | d2 = | 7.532 42
|
Fill | p = | 0.005 599 32
|
Average edge multiplicity | m̃ = | 2.022 91
|
Size of LCC | N = | 13,348
|
Diameter | δ = | 11
|
50-Percentile effective diameter | δ0.5 = | 1.935 20
|
90-Percentile effective diameter | δ0.9 = | 3.854 73
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.966 88
|
Gini coefficient | G = | 0.845 712
|
Balanced inequality ratio | P = | 0.150 270
|
Left balanced inequality ratio | P1 = | 0.052 707 9
|
Right balanced inequality ratio | P2 = | 0.204 523
|
Relative edge distribution entropy | Her = | 0.729 840
|
Power law exponent | γ = | 2.371 97
|
Tail power law exponent | γt = | 1.851 00
|
Tail power law exponent with p | γ3 = | 1.851 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.641 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 4.741 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.460 524
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 839.044
|
Algebraic connectivity | a = | 0.024 875 7
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.172 12
|
Controllability | C = | 12,510
|
Relative controllability | Cr = | 0.912 872
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|