Wikipedia edits (kw)
This is the bipartite edit network of the Cornish Wikipedia. It contains users
and pages from the Cornish Wikipedia, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 8,623
|
Left size | n1 = | 1,155
|
Right size | n2 = | 7,468
|
Volume | m = | 160,255
|
Unique edge count | m̿ = | 64,300
|
Wedge count | s = | 34,460,901
|
Claw count | z = | 17,588,976,982
|
Cross count | x = | 8,137,675,366,836
|
Square count | q = | 182,917,779
|
4-Tour count | T4 = | 1,601,375,244
|
Maximum degree | dmax = | 12,014
|
Maximum left degree | d1max = | 12,014
|
Maximum right degree | d2max = | 320
|
Average degree | d = | 37.169 2
|
Average left degree | d1 = | 138.749
|
Average right degree | d2 = | 21.458 9
|
Fill | p = | 0.007 454 61
|
Average edge multiplicity | m̃ = | 2.492 30
|
Size of LCC | N = | 7,882
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.386 42
|
90-Percentile effective diameter | δ0.9 = | 5.110 33
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.804 06
|
Gini coefficient | G = | 0.850 346
|
Balanced inequality ratio | P = | 0.157 873
|
Left balanced inequality ratio | P1 = | 0.061 071 4
|
Right balanced inequality ratio | P2 = | 0.193 797
|
Relative edge distribution entropy | Her = | 0.779 745
|
Power law exponent | γ = | 1.816 29
|
Tail power law exponent | γt = | 1.581 00
|
Tail power law exponent with p | γ3 = | 1.581 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.621 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 8.951 00
|
Right p-value | p2 = | 0.033 000 0
|
Degree assortativity | ρ = | −0.087 659 4
|
Degree assortativity p-value | pρ = | 7.119 79 × 10−110
|
Spectral norm | α = | 758.662
|
Algebraic connectivity | a = | 0.027 763 5
|
Spectral separation | |λ1[A] / λ2[A]| = | 2.930 50
|
Controllability | C = | 6,312
|
Relative controllability | Cr = | 0.746 276
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|