Wikiquote edits (la)
This is the bipartite edit network of the Latin Wikisource. It contains users
and pages from the Latin Wikisource, connected by edit events. Each edge
represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 24,998
|
Left size | n1 = | 998
|
Right size | n2 = | 24,000
|
Volume | m = | 72,730
|
Unique edge count | m̿ = | 38,777
|
Wedge count | s = | 24,152,873
|
Claw count | z = | 20,224,509,780
|
Cross count | x = | 15,954,757,230,909
|
Square count | q = | 2,545,757
|
4-Tour count | T4 = | 117,079,182
|
Maximum degree | dmax = | 11,158
|
Maximum left degree | d1max = | 11,158
|
Maximum right degree | d2max = | 941
|
Average degree | d = | 5.818 87
|
Average left degree | d1 = | 72.875 8
|
Average right degree | d2 = | 3.030 42
|
Fill | p = | 0.001 618 95
|
Average edge multiplicity | m̃ = | 1.875 60
|
Size of LCC | N = | 24,257
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.829 14
|
90-Percentile effective diameter | δ0.9 = | 5.786 98
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.665 24
|
Gini coefficient | G = | 0.749 558
|
Balanced inequality ratio | P = | 0.205 747
|
Left balanced inequality ratio | P1 = | 0.085 274 3
|
Right balanced inequality ratio | P2 = | 0.301 774
|
Relative edge distribution entropy | Her = | 0.768 499
|
Power law exponent | γ = | 3.784 48
|
Tail power law exponent | γt = | 2.901 00
|
Tail power law exponent with p | γ3 = | 2.901 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.601 00
|
Left p-value | p1 = | 0.700 000
|
Right tail power law exponent with p | γ3,2 = | 4.311 00
|
Right p-value | p2 = | 0.255 000
|
Degree assortativity | ρ = | −0.085 656 7
|
Degree assortativity p-value | pρ = | 4.659 90 × 10−64
|
Spectral norm | α = | 360.861
|
Algebraic connectivity | a = | 0.014 175 7
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.604 87
|
Controllability | C = | 22,934
|
Relative controllability | Cr = | 0.924 795
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|