Wikiquote edits (la)

This is the bipartite edit network of the Latin Wikisource. It contains users and pages from the Latin Wikisource, connected by edit events. Each edge represents an edit. The dataset includes the timestamp of each edit.

Metadata

Codeqla
Internal nameedit-lawikisource
NameWikiquote edits (la)
Data sourcehttp://dumps.wikimedia.org/
AvailabilityDataset is available for download
Consistency checkDataset passed all tests
Category
Authorship network
Dataset timestamp 2017-10-20
Node meaningUser, article
Edge meaningEdit
Network formatBipartite, undirected
Edge typeUnweighted, multiple edges
Temporal data Edges are annotated with timestamps

Statistics

Size n =24,998
Left size n1 =998
Right size n2 =24,000
Volume m =72,730
Unique edge count m̿ =38,777
Wedge count s =24,152,873
Claw count z =20,224,509,780
Cross count x =15,954,757,230,909
Square count q =2,545,757
4-Tour count T4 =117,079,182
Maximum degree dmax =11,158
Maximum left degree d1max =11,158
Maximum right degree d2max =941
Average degree d =5.818 87
Average left degree d1 =72.875 8
Average right degree d2 =3.030 42
Fill p =0.001 618 95
Average edge multiplicity m̃ =1.875 60
Size of LCC N =24,257
Diameter δ =12
50-Percentile effective diameter δ0.5 =3.829 14
90-Percentile effective diameter δ0.9 =5.786 98
Median distance δM =4
Mean distance δm =4.665 24
Gini coefficient G =0.749 558
Balanced inequality ratio P =0.205 747
Left balanced inequality ratio P1 =0.085 274 3
Right balanced inequality ratio P2 =0.301 774
Relative edge distribution entropy Her =0.768 499
Power law exponent γ =3.784 48
Tail power law exponent γt =2.901 00
Tail power law exponent with p γ3 =2.901 00
p-value p =0.000 00
Left tail power law exponent with p γ3,1 =1.601 00
Left p-value p1 =0.714 000
Right tail power law exponent with p γ3,2 =4.311 00
Right p-value p2 =0.262 000
Degree assortativity ρ =−0.085 656 7
Degree assortativity p-value pρ =4.659 90 × 10−64
Spectral norm α =360.861
Spectral separation 1[A] / λ2[A]| =1.604 87
Controllability C =22,934
Relative controllability Cr =0.924 795

Plots

Fruchterman–Reingold graph drawing

Degree distribution

Cumulative degree distribution

Lorenz curve

Spectral distribution of the adjacency matrix

Spectral distribution of the normalized adjacency matrix

Spectral distribution of the Laplacian

Spectral graph drawing based on the adjacency matrix

Spectral graph drawing based on the Laplacian

Spectral graph drawing based on the normalized adjacency matrix

Degree assortativity

Zipf plot

Hop distribution

Delaunay graph drawing

Edge weight/multiplicity distribution

Temporal distribution

Temporal hop distribution

Diameter/density evolution

Matrix decompositions plots

Downloads

References

[1] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proc. Int. Conf. on World Wide Web Companion, pages 1343–1350, 2013. [ http ]
[2] Wikimedia Foundation. Wikimedia downloads. http://dumps.wikimedia.org/, January 2010.