Wikibooks edits (li)
This is the bipartite edit network of the Limburgish Wikibooks. It contains
users and pages from the Limburgish Wikibooks, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 1,229
|
Left size | n1 = | 152
|
Right size | n2 = | 1,077
|
Volume | m = | 2,321
|
Unique edge count | m̿ = | 1,617
|
Wedge count | s = | 361,287
|
Claw count | z = | 86,368,550
|
Cross count | x = | 16,624,056,950
|
Square count | q = | 42,326
|
4-Tour count | T4 = | 1,790,194
|
Maximum degree | dmax = | 1,277
|
Maximum left degree | d1max = | 1,277
|
Maximum right degree | d2max = | 61
|
Average degree | d = | 3.777 05
|
Average left degree | d1 = | 15.269 7
|
Average right degree | d2 = | 2.155 06
|
Fill | p = | 0.009 877 58
|
Average edge multiplicity | m̃ = | 1.435 37
|
Size of LCC | N = | 1,086
|
Diameter | δ = | 10
|
50-Percentile effective diameter | δ0.5 = | 1.840 93
|
90-Percentile effective diameter | δ0.9 = | 3.871 54
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.822 48
|
Gini coefficient | G = | 0.703 139
|
Balanced inequality ratio | P = | 0.216 286
|
Left balanced inequality ratio | P1 = | 0.121 930
|
Right balanced inequality ratio | P2 = | 0.325 291
|
Relative edge distribution entropy | Her = | 0.739 685
|
Power law exponent | γ = | 4.077 28
|
Tail power law exponent | γt = | 2.401 00
|
Tail power law exponent with p | γ3 = | 2.401 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.921 00
|
Left p-value | p1 = | 0.090 000 0
|
Right tail power law exponent with p | γ3,2 = | 2.531 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.288 545
|
Degree assortativity p-value | pρ = | 2.234 19 × 10−32
|
Spectral norm | α = | 89.034 3
|
Algebraic connectivity | a = | 0.035 406 4
|
Spectral separation | |λ1[A] / λ2[A]| = | 3.176 38
|
Controllability | C = | 958
|
Relative controllability | Cr = | 0.780 130
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|