Wiktionary edits (lo)
This is the bipartite edit network of the Lao Wiktionary. It contains users and
pages from the Lao Wiktionary, connected by edit events. Each edge represents
an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 62,549
|
Left size | n1 = | 319
|
Right size | n2 = | 62,230
|
Volume | m = | 452,686
|
Unique edge count | m̿ = | 256,841
|
Wedge count | s = | 4,509,635,364
|
Claw count | z = | 67,561,421,650,701
|
Cross count | x = | 820,346,639,699,184,000
|
Square count | q = | 5,328,210,486
|
4-Tour count | T4 = | 60,664,739,334
|
Maximum degree | dmax = | 120,778
|
Maximum left degree | d1max = | 120,778
|
Maximum right degree | d2max = | 112
|
Average degree | d = | 14.474 6
|
Average left degree | d1 = | 1,419.08
|
Average right degree | d2 = | 7.274 40
|
Fill | p = | 0.012 938 2
|
Average edge multiplicity | m̃ = | 1.762 51
|
Size of LCC | N = | 62,173
|
Diameter | δ = | 15
|
50-Percentile effective diameter | δ0.5 = | 1.569 05
|
90-Percentile effective diameter | δ0.9 = | 3.130 60
|
Median distance | δM = | 2
|
Mean distance | δm = | 2.247 34
|
Gini coefficient | G = | 0.724 628
|
Balanced inequality ratio | P = | 0.234 981
|
Left balanced inequality ratio | P1 = | 0.028 421 5
|
Right balanced inequality ratio | P2 = | 0.337 139
|
Relative edge distribution entropy | Her = | 0.659 052
|
Power law exponent | γ = | 1.837 48
|
Tail power law exponent | γt = | 6.191 00
|
Tail power law exponent with p | γ3 = | 6.191 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.571 00
|
Left p-value | p1 = | 0.000 00
|
Right tail power law exponent with p | γ3,2 = | 8.991 00
|
Right p-value | p2 = | 0.000 00
|
Degree assortativity | ρ = | −0.431 023
|
Degree assortativity p-value | pρ = | 0.000 00
|
Spectral norm | α = | 967.669
|
Algebraic connectivity | a = | 0.022 632 5
|
Spectral separation | |λ1[A] / λ2[A]| = | 3.123 38
|
Controllability | C = | 61,873
|
Relative controllability | Cr = | 0.990 047
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|