Wikipedia edits (ltg)
This is the bipartite edit network of the Latgalian Wikipedia. It contains
users and pages from the Latgalian Wikipedia, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 3,158
|
Left size | n1 = | 493
|
Right size | n2 = | 2,665
|
Volume | m = | 28,951
|
Unique edge count | m̿ = | 14,447
|
Wedge count | s = | 3,340,179
|
Claw count | z = | 854,972,279
|
Cross count | x = | 202,170,075,015
|
Square count | q = | 5,533,146
|
4-Tour count | T4 = | 57,680,046
|
Maximum degree | dmax = | 3,095
|
Maximum left degree | d1max = | 3,095
|
Maximum right degree | d2max = | 400
|
Average degree | d = | 18.335 0
|
Average left degree | d1 = | 58.724 1
|
Average right degree | d2 = | 10.863 4
|
Fill | p = | 0.010 996 0
|
Average edge multiplicity | m̃ = | 2.003 95
|
Size of LCC | N = | 2,804
|
Diameter | δ = | 12
|
50-Percentile effective diameter | δ0.5 = | 3.146 52
|
90-Percentile effective diameter | δ0.9 = | 5.392 82
|
Median distance | δM = | 4
|
Mean distance | δm = | 3.608 71
|
Gini coefficient | G = | 0.797 866
|
Balanced inequality ratio | P = | 0.184 812
|
Left balanced inequality ratio | P1 = | 0.099 167 6
|
Right balanced inequality ratio | P2 = | 0.249 698
|
Relative edge distribution entropy | Her = | 0.800 706
|
Power law exponent | γ = | 1.877 81
|
Tail power law exponent | γt = | 2.671 00
|
Tail power law exponent with p | γ3 = | 2.671 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.601 00
|
Left p-value | p1 = | 0.001 000 00
|
Right tail power law exponent with p | γ3,2 = | 7.821 00
|
Right p-value | p2 = | 0.305 000
|
Degree assortativity | ρ = | −0.205 476
|
Degree assortativity p-value | pρ = | 1.584 56 × 10−137
|
Spectral norm | α = | 282.153
|
Algebraic connectivity | a = | 0.023 504 8
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.312 97
|
Controllability | C = | 2,224
|
Relative controllability | Cr = | 0.708 280
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|