Wikiquote edits (lt)
This is the bipartite edit network of the Lithuanian Wikisource. It contains
users and pages from the Lithuanian Wikisource, connected by edit events. Each
edge represents an edit. The dataset includes the timestamp of each edit.
Metadata
Statistics
Size | n = | 1,983
|
Left size | n1 = | 221
|
Right size | n2 = | 1,762
|
Volume | m = | 4,944
|
Unique edge count | m̿ = | 2,672
|
Wedge count | s = | 332,432
|
Claw count | z = | 62,710,067
|
Cross count | x = | 10,502,052,539
|
Square count | q = | 13,361
|
4-Tour count | T4 = | 1,442,740
|
Maximum degree | dmax = | 1,778
|
Maximum left degree | d1max = | 1,778
|
Maximum right degree | d2max = | 95
|
Average degree | d = | 4.986 38
|
Average left degree | d1 = | 22.371 0
|
Average right degree | d2 = | 2.805 90
|
Fill | p = | 0.006 861 80
|
Average edge multiplicity | m̃ = | 1.850 30
|
Size of LCC | N = | 1,741
|
Diameter | δ = | 14
|
50-Percentile effective diameter | δ0.5 = | 3.633 01
|
90-Percentile effective diameter | δ0.9 = | 6.690 36
|
Median distance | δM = | 4
|
Mean distance | δm = | 4.410 91
|
Gini coefficient | G = | 0.725 704
|
Balanced inequality ratio | P = | 0.214 300
|
Left balanced inequality ratio | P1 = | 0.123 989
|
Right balanced inequality ratio | P2 = | 0.307 443
|
Relative edge distribution entropy | Her = | 0.799 981
|
Power law exponent | γ = | 3.822 15
|
Tail power law exponent | γt = | 2.341 00
|
Tail power law exponent with p | γ3 = | 2.341 00
|
p-value | p = | 0.000 00
|
Left tail power law exponent with p | γ3,1 = | 1.711 00
|
Left p-value | p1 = | 0.409 000
|
Right tail power law exponent with p | γ3,2 = | 3.661 00
|
Right p-value | p2 = | 0.157 000
|
Degree assortativity | ρ = | −0.249 760
|
Degree assortativity p-value | pρ = | 2.782 40 × 10−39
|
Spectral norm | α = | 152.636
|
Algebraic connectivity | a = | 0.032 350 4
|
Spectral separation | |λ1[A] / λ2[A]| = | 1.754 95
|
Controllability | C = | 1,540
|
Relative controllability | Cr = | 0.779 352
|
Plots
Matrix decompositions plots
Downloads
References
[1]
|
Jérôme Kunegis.
KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages
1343–1350, 2013.
[ http ]
|
[2]
|
Wikimedia Foundation.
Wikimedia downloads.
http://dumps.wikimedia.org/, January 2010.
|